

Model	DSO4202C	DSO4102C	DSO4072C
Oscilloscope			
Sample Rate	Sampling Rate Range: 1GSa/s		
	Equivalent Sample Rate: 25GSa/s		
Acquisition Modes			
Normal	Normal data only		
Peak Detect	High-frequency and randon glith capture		
Average	Wavefom Average, selectable 4,8,16,32,64,128		
Inputs			
Inputs Coupling	AC, DC, GND		
Inpits Impendance	1M2% 20pF3pF		
Probe Attenuation	1X, 10X		
Supported Probe Attenuation Factor	1X, 10X, 100X, 1000X		
Maximum Input Voltage	CAT I and CAT II: 300VRMS (10×)		

CAT III: 150VRMS(1×);		
100kHz to 13V peak AC at 3MHz* and above. For non- sinusoidal waveforms, peak value must be less than 450V. Excursion above 300V should be of less than 100ms duration. RMS signal level including all DC components removed through AC coupling must be limited to 300V. If these values are exceeded, damage to the oscilloscope may		
1GS/s	1	
		İ
40K		
2ns/div to 40s/div	4ns/div to 40s/div	
	1)	
50ppm at over any 1ms t	ime intervai)	İ
2ns/div to 10ns/div;	20ns/div to 80us/div; (-8div x s/div) to 40ms;	
(-4div x s/div) to 20ms;	200us/div to 40s/div; (-8div x s/div) to 400s	
8-bit resolution, all chan	8-bit resolution, all channel sampled simultaneously	
2mV/div to 10V/div		
200MHz	100MHz	70MHz
1.8ns	3.5ns	5ns
2mV/div to 20mV/div, 4	100mV; 50mV/div t	o 200mV/div, 1V
500mV/div to 2V/div, 40V; 5V/div, 50V		
+, -, *, /, FFT		
Windows: Hanning, Flatop, Rectamgular, Bartlett, Blackman;		
oHz at BNC		
3% for Normal or Average acquisition mode, 5V/div to 10mV/div; 4% for Normal or Average acquisition mode, 5mV/div to		
	Installation Category II: 100kHz to 13V peak AC asinusoidal waveforms, pexcursion above 300V siduration. RMS signal leveremoved through AC couthese values are exceede occur. 1GS/s (sin x)/x 40K 2ns/div to 40s/div 50ppm at over any 1ms to 2ns/div to 10ns/div; (-4div x s/div) to 20ms; Single-shot, Normal most reading + 0.6ns); >16 averages: (1 sample 0.4ns); Sample interval = s/div - 8-bit resolution, all chand 2mV/div to 10V/div 200MHz 1.8ns 2mV/div to 20mV/div, 4 +, -, *, /, FFT Windows: Hanning, Flat 1024 sample point 10Hz at BNC 3% for Normal or Average 10mV/div;	Installation Category II: derate at 20dB/dec 100kHz to 13V peak AC at 3MHz* and above sinusoidal waveforms, peak value must be le Excursion above 300V should be of less that duration. RMS signal level including all DC oremoved through AC coupling must be limit these values are exceeded, damage to the oscoccur. 1GS/s (sin x)/x 40K 2ns/div to 40s/div 2ons/div to 40s/div 5oppm at over any 1ms time interval) 2ns/div to 10ns/div; 2ons/div to 40s/ds/div) to 40ms; (-4div x s/div) to 20ms; 20ous/div to 40s/s/s/div) to 40os Single-shot, Normal mode: (1 sample interval reading + 0.6ns); >16 averages: (1 sample interval + 100ppm × 0.4ns); Sample interval = s/div ÷ 200 8-bit resolution, all channel sampled simultation of the sample of t

DC Measurement Accuracy, Average Acquisition Mode	When vertical displacement is zero, and N 16: (3% × reading + 0.1div + 1mV) only 10mV/div or greater is selected; When vertical displacement is not zero, and N16: [3% × (reading + vertical position) + 1% of vertical position + 0.2div]; Add 2mV for settings from 2mV/div to 200mV/div; add 50mV for settings from 200mV/div to 5V/div		
Volts Measurement Repeatability, Average Acquisition Mode	Delta volts between any two averages of 16 waveforms acquired under same setup and ambient conditions		
Trigger System			
Trigger Types	Edge, Video, Pulse, Slope, Over time, Alternative		
Trigger Source	CH1, CH2, EXT, EXT/5, AC Line		
Trigger Modes	Auto, Normal, Single		
Coupling Type	DC, AC, Noise Reject, HF Reject, LF Reject		
Trigger Sensitivity	DC(CH1,CH2): 1div from DC to 10MHz; 1.5div from 10MHz to 100MHz; 2div from 100MHz to Full; DCEXT): 200mV from DC to 100MHz; 350mV from 100MHz to 200MHz;		
(Edge Trigger Type)	DCEXT/5):		
	1V from DC to 100MHz;1.75V from 100MHz to 200MHz;		
	AC: Attenuates signals below 10Hz;		
	HF Reject: Attenuates signals above 80kHz;		
	LF Reject: Same as the DC-coupled limits for frequencies above 150kHz; attenuates signals below 150kHz		
	CH1/CH2: 8 divisions from center of screen;		
Trigger Level Range	EXT: 1.2V;		
	EXT/5:6V		
Trigger Level Accuracy(typical)Accuracy is for	CH1/CH2: 0.2div × volts/div within 4 divisions from center of screen;		
signals having rise and	EXT: (6% of setting + 40mV);		
fall times 20ns	EXT/5: (6% of setting + 200mV);		
Set Level to 50%(typical)	Operates with input signals 50Hz		
Video Trigger			
	CH1, CH2: Peak-to-peak amplitude of 2 divisions;		
Video Trigger Type	EXT: 400mV;		
	EXT/5: 2V		
Signal Formats and Field Rates, Video Trigger Type	Supports NTSC, PAL and SECAM broadcast systems for any field or any line		
Holdoff Range	100ns ~ 10s		
Pulse Width Trigger			
Pulse Width Trigger Mode	Trigger when (< , >, = , or); Positive pulse or Negative pulse		
Pulse Width Trigger Point	Equal: The oscilloscope triggers when the trailing edge of the pulse crosses the trigger level.		

1	
Pulse Width Range	Not Equal: If the pulse is narrower than the specified width, the trigger point is the trailing edge. Otherwise, the oscilloscope triggers when a pulse continues longer than the time specified as the Pulse Width. Less than: The trigger point is the trailing edge. Greater than (also called overtime trigger): The oscilloscope triggers when a pulse continues longer than the time specified as the Pulse Width 20ns ~ 10s
Slope Trigger	2010 100
Slope Trigger Mode	Trigger when (< , > , = , or); Positive slope or Negative slope
Slope Trigger Mode	Equal: The oscilloscope triggers when the waveform slope is equal to the set slope. Not Equal: The oscilloscope triggers when the waveform slope is not equal to the set slope. Less than: The oscilloscope triggers when the waveform slope is less than the set slope. Greater than: The oscilloscope triggers when the waveform slope is greater than the set slope.
Time Range	20ns ~ 10s
Overtime Trigger	
Over Time Mode	Rising edge or Falling edge
Time Range	20ns ~ 10s
Alternative Trigger	
Trigger on CH1	Internal Trigger: Edge, Pulse Width, Video, Slope
Trigger on CH2	Internal Trigger: Edge, Pulse Width, Video, Slope
Trigger Frequency Counter	
Readout Resolution	6 digits
Accuracy (typical)	30ppm (including all frequency reference errors and 1 count errors)
Frequency Range	AC coupled, from 4Hz minimum to rated bandwidth
Signal Source	Pulse Width or Edge Trigger modes: all available trigger sources The Frequency Counter measures trigger source at all times, including when the oscilloscope acquisition pauses due to changes in the run status, or acquisition of a single shot event has completed. Pulse Width Trigger mode: The oscilloscope counts pulses of significant magnitude inside the 1s measurement window that qualify as triggerable events, such as narrow pulses in a PWM pulse train if set to < mode and the width is set to a relatively small time. Edge Trigger mode: The oscilloscope counts all edges of sufficient magnitude and correct polarity. Video Trigger mode: The Frequency Counter does not work.
Measure	
Cursor Measurement	Voltage difference between cursors: V

	Time difference between cursors: T	
	Reciprocal of T in Hertz (1/T)	
	Frequency, Period, Mean, Pk-Pk, Cycli RMS, Minimum,	
	Maximum, Rise time, Fall Time,	
	+Pulse Width, -Pulse Width, Delay1-2Rise, Delay1-2Fall,	
Auto Measuerment	+Duty, -Duty, Vbase, Vtop, Vmid,	
	Vamp, Overshoot, Preshoot, Preiod Mean, Preiod RMS,	
	FOVShoot, RPREShoot, BWIDTH,	
	FRF, FFR, LRR, LRF, LFF,	
Signal Source Mode		
Waveform Impedance	DC-25MHz	
Sample Rate	200MHzDDS	
Output Waveform	Arbitrary wave/square wave/sine wave/triangle wave/trapezoidal wave/pulse wave/DC	
Frequency Resolution	0.1%	
Waveform Depth	4KSa	
Vertical Resolution	12bit	
Frequency Stability	<30ppm	
Waveform Range	3.5V Max	
Output Impedance	50	
Output Current	50mA Ipeak=100mA	
System BW	25M	
Harmonic Distortion	-50dBc 1KHz -40dBc 10KHz	
General Features		
Display		
Display Type	7 inch 64K color TFT (diagonal liquid crystal)	
Display Resolution	800 horizontal by 480 vertical pixels	
Display Contrast	Adjustable (16 gears) with the progress bar	
Probe Compensator Out		
Output Voltage(typical)	About 5Vpp into 1M load	
Frequency(typical)	1kHz	
Power Supply		
	100-120VACRMS(10%), 45Hz to 440Hz, CAt II	
Supply Voltage	120-240VACRMS(10%), 45Hz to 66Hz, CATII	
Power Consumption	<30W	
Fuse	2A, T rating, 250V	
Environmental		
	Operating: 32 to 122 (0 to 50);	
Temperature	Nonoperating: -40 to 159.8(-40 to +71)	
Cooling Method	Convection	
	+104 or below (+40 or below): 90% relative humidity;	
Humidity	106to 122(+41 to 50): 60% relative humidity	
	Operating: Below 3,000m (10,000 feet);	
Altitude	Nonoperaring: Below 15,000m(50,000 feet)	
Mechanical	rionoperaring. Below 19,000m(90,000 feet)	
wicciiaiiicai		

Size	Length 385mm, Width 200mm, Height 245mm
Weight	3.5KG(with Packing); 2.08KG(without Packing