

8K x 8 HIGH-SPEED CMOS STATIC RAM

July 2002

FEATURES

- High-speed access time: 10, 12, and 15 ns
- Automatic power-down when chip is deselected
- CMOS low power operation
 - 450 mW (typical) operating
 - 250 μW (typical) standby
- TTL compatible interface levels
- Single 5V power supply
- Fully static operation: no clock or refresh required
- · Three state outputs
- One Chip Enables (CE) for increased speed

DESCRIPTION

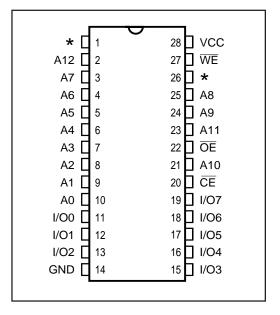
The *ISSI* IS61C64B is a very high-speed, low power, 8192-word by 8-bit static RAM. It is fabricated using *ISSI*'s high-performance CMOS technology. This highly reliable process coupled with innovative circuit design techniques, yields access times as fast as 10 ns with low power consumption.

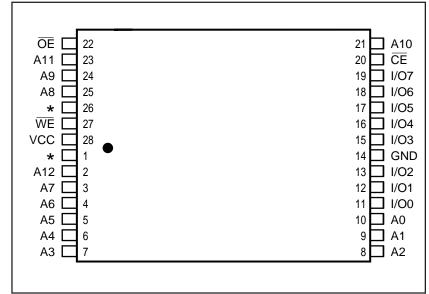
When $\overline{\text{CE}}$ is HIGH (deselected), the device assumes a standby mode at which the power dissipation can be reduced down to 250 μW (typical) with CMOS input levels.

Easy memory expansion is provided by using one Chip Enable input, \overline{CE} . The active LOW Write Enable (\overline{WE}) controls both writing and reading of the memory.

The IS61C64B is packaged in the JEDEC standard 28-pin, 300-mil SOJ, and TSOP.

FUNCTIONAL BLOCK DIAGRAM


Copyright © 2002 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.


TRUTH TABLE

Mode	WE	CE	ŌĒ	I/O Operation	Vcc Current
Not Selected	Χ	Н	Χ	High-Z	ISB1, ISB2
(Power-down)	X	Χ	X	High-Z	ISB1, ISB2
Output Disabled	Н	L	Н	High-Z	Icc
Read	Н	L	L	D оит	Icc
Write	L	L	Χ	Din	lcc

PIN CONFIGURATION 28-Pin SOJ

PIN CONFIGURATION 28-Pin TSOP (Type 1)

PIN DESCRIPTIONS

A0-A12	Address Inputs
CE	Chip Enable 1 Input
ŌĒ	Output Enable Input
WE	Write Enable Input
I/O0-I/O7	Input/Output
*	Must be tied to either Vcc or GND
Vcc	Power
GND	Ground

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Parameter	Value	Unit
VTERM	Terminal Voltage with Respect to GND	-0.5 to +7.0	V
TBIAS	Temperature Under Bias	-10 to +85	°C
Тѕтс	Storage Temperature	-65 to +150	°C
Рт	Power Dissipation	1.0	W
Іоит	DC Output Current (LOW)	20	mA

Notes:

 Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

OPERATING RANGE

Range	Ambient Temperature	Speed	Vcc
Commercial	0°C to +70°C	10 ns	5V ± 5%
		12 ns	5V ± 10%
		15 ns	5V ± 10%

DC ELECTRICAL CHARACTERISTICS (Over Operating Range)

Symbol	Parameter	Test Conditions	Min.	Max.	Unit
Vон	Output HIGH Voltage	Vcc = Min., IoH = -4.0 mA	2.4	_	V
Vol	Output LOW Voltage	Vcc = Min., IoL = 8.0 mA	_	0.4	V
VIH	Input HIGH Voltage		2.2	Vcc + 0.5	V
VIL	Input LOW Voltage(1)		-0.5	0.8	V
ILI	Input Leakage	GND - VIN - VCC	-2	2	μA
ILO	Output Leakage	GND - Vouт - Vcc, Outputs Disabled	-2	2	μΑ

Notes:

1. $V_{IL} = -3.0V$ for pulse width less than 10 ns.

POWER SUPPLY CHARACTERISTICS⁽¹⁾ (Over Operating Range)

Symbol	Parameter	Test Conditions	Min.	10ns Max.	-12ı Min.	ns Max.		5ns Max.	Unit
Icc	Vcc Dynamic Operating Supply Current	Vcc = Max., lout = 0 mA, f = fmax	_	185	_	175	_	135	mA
ISB1	TTL Standby Current (TTL Inputs)	Vcc = Max., VIN = VIH OF VIL CE1 • VIH OF CE2 - VIL, f = 0	_	30	-	30	_	30	mA
ISB2	CMOS Standby Current (CMOS Inputs)	Vcc = Max., CE1 • Vcc − 0.2V, CE2 - 0.2V, VIN • Vcc − 0.2V, or VIN - 0.2V, f = 0	_	10	_	10	_	10	mA

Notes:

CAPACITANCE^(1,2)

Symbol	Parameter	Conditions	Max.	Unit
CIN	Input Capacitance	VIN = 0V	8	pF
Соит	Output Capacitance	Vout = 0V	10	pF

Notes:

- 1. Tested initially and after any design or process changes that may affect these parameters.
- 2. Test conditions: $T_A = 25^{\circ}C$, f = 1 MHz, $V_{CC} = 5.0V$.

^{1.} At f = fmax, address and data inputs are cycling at the maximum frequency, f = 0 means no input lines change.

READ CYCLE SWITCHING CHARACTERISTICS(1) (Over Operating Range)

		-10	Ons	-12n	s	-15ns	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min. Max.	Unit
trc	Read Cycle Time	10	_	12	_	15 —	ns
t AA	Address Access Time	_	10	_	12	— 15	ns
t oha	Output Hold Time	2	_	2	_	2 —	ns
tace	CE Access Time	_	10	_	12	— 15	ns
tDOE	OE Access Time	_	5	_	6	- 7	ns
tLZOE ⁽²⁾	OE to Low-Z Output	0	_	0	_	0 —	ns
thzoe ⁽²⁾	OE to High-Z Output	_	5	_	6	- 6	ns
tLZCE1(2)	CE to Low-Z Output	2	_	3	_	3 —	ns
tHZCE ⁽²⁾	CE to High-Z Output	_	5	_	7	— 8	ns

Notes:

- 1. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V and output loading specified in Figure 1a.
- 2. Tested with the load in Figure 1b. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.

AC TEST CONDITIONS

Parameter	Unit
Input Pulse Level	0V to 3.0V
Input Rise and Fall Times	3 ns
Input and Output Timing and Reference Level	1.5V
Output Load	See Figures 1a and 1b

AC TEST LOADS

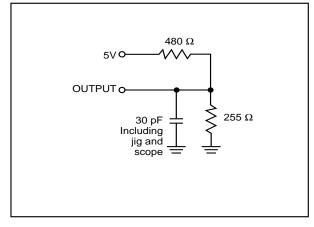


Figure 1a.

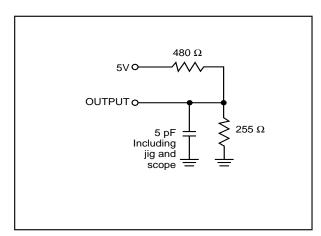
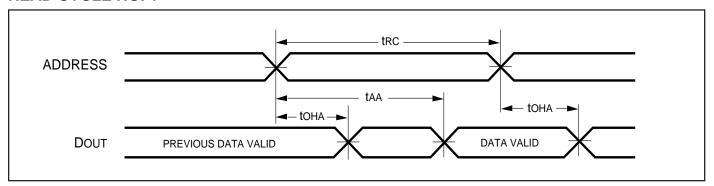
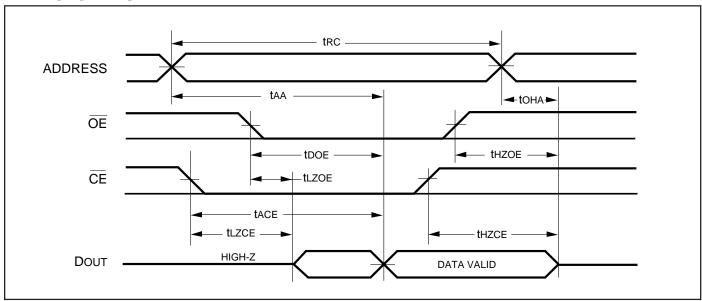



Figure 1b.



AC WAVEFORMS

READ CYCLE NO. 1^(1,2)

READ CYCLE NO. 2^(1,3)

Notes Notes

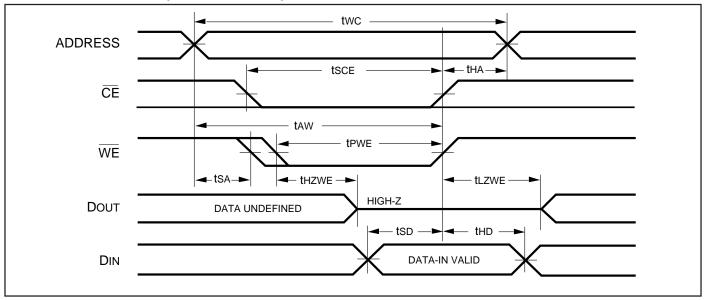
- 1. WE is HIGH for a Read Cycle.
- 2. The device is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$.
- 3. Address is valid prior to or coincident with $\overline{\text{CE}}$ LOW transitions.

WRITE CYCLE SWITCHING CHARACTERISTICS(1,3) (Over Operating Range)

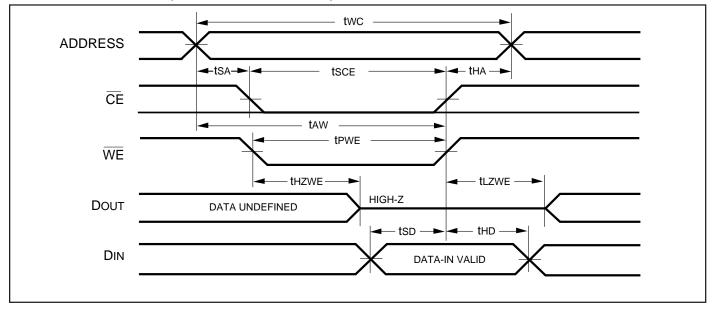
		-10	Ons Ons	-12n	ıs	-15	ins	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
twc	Write Cycle Time	10	_	12	_	15	_	ns
tsce	CE to Write End	9	_	10	_	12	_	ns
taw	Address Setup Time to Write End	9	_	10	_	12	_	ns
t HA	Address Hold from Write End	0	_	0	_	0	_	ns
t sa	Address Setup Time	0	_	0	_	0	_	ns
tpwe ⁽⁴⁾	WE Pulse Width	8	_	8	_	10	_	ns
tsp	Data Setup to Write End	8	_	8	_	9	_	ns
t HD	Data Hold from Write End	0	_	0	_	0	_	ns
tHZWE ⁽²⁾	WE LOW to High-Z Output	_	6	_	6	_	7	ns
tLZWE ⁽²⁾	WE HIGH to Low-Z Output	0	_	0	_	0	_	ns

Notes:

2. Tested with the load in Figure 1b. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.


^{1.} Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V and output loading specified in Figure 1a.

^{3.} The internal write time is defined by the overlap of $\overline{\text{CE}}$ LOW and $\overline{\text{WE}}$ LOW. All signals must be in valid states to initiate a Write, but any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the write.



AC WAVEFORMS

WRITE CYCLE NO. 1 (WE Controlled)(1,2)

WRITE CYCLE NO. 2 (CE1, CE2 Controlled)(1,2)

Notes:

- 1. The internal write time is defined by the overlap of $\overline{\text{CE}}$ LOW and $\overline{\text{WE}}$ LOW. All signals must be in valid states to initiate a Write, but any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the write.
- 2. I/O will assume the High-Z state if $\overline{OE} = V_{IH}$.

ORDERING INFORMATION

Commercial Range: 0°C to +70°C

Speed (ns)	Order Part No.	Package
10	IS61C64B-10J IS61C64B-10T	300-mil Plastic SOJ Plastic TSOP
12	IS61C64B-12J IS61C64B-12T	300-mil Plastic SOJ Plastic TSOP
15	IS61C64B-15J IS61C64B-15T	300-mil Plastic SOJ Plastic TSOP