LM2574/LM2574HV SIMPLE SWITCHER ${ }^{\text {TM }} 0.5$ A Step-Down Voltage Regulator

Check for Samples: LM2574, LM2574HV

FEATURES

- 3.3V, 5V, 12V, 15V, and Adjustable Output Versions
- Adjustable Version Output Voltage Range, 1.23V to 37V (57V for HV version) $\pm 4 \%$ Max Over Line and Load Conditions
- Specified 0.5A Output Current
- Wide Input Voltage Range, 40V, up to 60V for HV Version
- Requires Only 4 External Components
- 52 kHz Fixed Frequency Internal Oscillator
- TTL Shutdown Capability, Low Power Standby Mode
- High Efficiency
- Uses Readily Available Standard Inductors
- Thermal Shutdown and Current Limit Protection

APPLICATIONS

- Simple High-Efficiency Step-Down (Buck) Regulator
- Efficient Pre-Regulator for Linear Regulators
- On-Card Switching Regulators
- Positive to Negative Converter (Buck-Boost)

DESCRIPTION

The LM2574 series of regulators are monolithic integrated circuits that provide all the active functions for a step-down (buck) switching regulator, capable of driving a 0.5 A load with excellent line and load regulation. These devices are available in fixed output voltages of $3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}$, and an adjustable output version.
Requiring a minimum number of external components, these regulators are simple to use and include internal frequency compensation and a fixedfrequency oscillator.

The LM2574 series offers a high-efficiency replacement for popular three-terminal linear regulators. Because of its high efficiency, the copper traces on the printed circuit board are normally the only heat sinking needed.
A standard series of inductors optimized for use with the LM2574 are available from several different manufacturers. This feature greatly simplifies the design of switch-mode power supplies.
Other features include a specified $\pm 4 \%$ tolerance on output voltage within specified input voltages and output load conditions, and $\pm 10 \%$ on the oscillator frequency. External shutdown is included, featuring $50 \mu \mathrm{~A}$ (typical) standby current. The output switch includes cycle-by-cycle current limiting, as well as thermal shutdown for full protection under fault conditions.

Typical Application (Fixed Output Voltage Versions)

Note: Pin numbers are for 8-pin PDIP package.
Figure 1.

[^0]
Connection Diagram

* No internal connection, but should be soldered to PC board for best heat transfer.
Figure 2. 8-Lead PDIP (Top View) See Package Number P0008E

Figure 3. 14-Lead Wide (Top View) SOIC (NPA)
See Package Number NPA0014A

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Maximum Supply Voltage	LM2574	45 V
	LM2574HV	63 V
$\overline{\text { ON /OFF Pin Input Voltage }}$		$-0.3 \mathrm{~V} \leq \mathrm{V} \leq+\mathrm{V}_{\text {IN }}$
Output Voltage to Ground	(Steady State)	-1V
Minimum ESD Rating	($\mathrm{C}=100 \mathrm{pF}, \mathrm{R}=1.5 \mathrm{k} \Omega$)	2 kV
Storage Temperature Range		$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature	(Soldering, 10 seconds)	$260^{\circ} \mathrm{C}$
Maximum Junction Temperature		$150^{\circ} \mathrm{C}$
Power Dissipation		Internally Limited

(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not ensure specific performance limits. For ensured specifications and test conditions, see the LM2574-3.3, LM2574HV-3.3 Electrical Characteristics.
(2) If Military/Aerospace specified devices are required, please contact the TI Sales Office/ Distributors for availability and specifications.

Operating Ratings

Temperature Range	LM2574/LM2574HV	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}$
Supply Voltage	LM2574	40 V
	LM2574HV	60 V

LM2574-3.3, LM2574HV-3.3 Electrical Characteristics

Specifications with standard type face are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range.

Symbol	Parameter	Conditions	$\begin{gathered} \text { LM2574-3.3 } \\ \text { LM2574HV-3.3 } \end{gathered}$		Units (Limits)
			Typ	Limit ${ }^{(1)}$	
SYSTEM PARAMETERS Test Circuit in Figure 23 and Figure 24, ${ }^{(2)}$					
$\mathrm{V}_{\text {OUT }}$	Output Voltage	$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=100 \mathrm{~mA}$	3.3	$\begin{aligned} & 3.234 \\ & 3.366 \end{aligned}$	$\begin{gathered} \text { V } \\ \text { V(Min) } \\ \text { V(Max) } \end{gathered}$
$\mathrm{V}_{\text {OUT }}$	Output Voltage LM2574	$4.75 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V}, 0.1 \mathrm{~A} \leq \mathrm{l}_{\text {LOAD }} \leq 0.5 \mathrm{~A}$	3.3	$\begin{aligned} & 3.168 / 3.135 \\ & 3.432 / 3.465 \end{aligned}$	$\begin{gathered} \hline \mathrm{V} \\ \mathrm{~V}(\operatorname{Min}) \\ \mathrm{V}(\mathrm{Max}) \end{gathered}$
$\mathrm{V}_{\text {OUT }}$	Output Voltage LM2574HV	$4.75 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 60 \mathrm{~V}, 0.1 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 0.5 \mathrm{~A}$	3.3	$\begin{aligned} & 3.168 / 3.135 \\ & 3.450 / 3.482 \end{aligned}$	V(Min) V(Max)
η	Efficiency	$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0.5 \mathrm{~A}$	72		\%

(1) All limits specified at room temperature (Standard type face) and at temperature extremes (bold type face). All room temperature limits are 100% production tested. All limits at temperature extremes are specified via correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level.
(2) External components such as the catch diode, inductor, input and output capacitors can affect switching regulator system performance. When the LM2574 is used as shown in the Figure 24 test circuit, system performance will be as shown in system parameters section of Electrical Characteristics.

LM2574-5.0, LM2574HV-5.0 Electrical Characteristics

Specifications with standard type face are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating
Temperature Range.

Symbol	Parameter	Conditions	LM2574-5.0		$\begin{aligned} & \text { Units } \\ & \text { (Limits) } \end{aligned}$
			LM2574HV-5.0		
			Typ	Limit ${ }^{(1)}$	
SYSTEM PARAMETERS Test Circuit in Figure 23 and Figure 24, ${ }^{(2)}$					
$\mathrm{V}_{\text {OUT }}$	Output Voltage	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=100 \mathrm{~mA}$	5	$\begin{aligned} & 4.900 \\ & 5.100 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V}(\operatorname{Min}) \\ \mathrm{V}(\mathrm{Max}) \end{gathered}$
$\mathrm{V}_{\text {OUT }}$	Output Voltage LM2574	$7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 40 \mathrm{~V}, 0.1 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 0.5 \mathrm{~A}$	5	$\begin{aligned} & \text { 4.800/4.750 } \\ & 5.200 / 5.250 \end{aligned}$	V V(Min) V(Max)
$\mathrm{V}_{\text {OUT }}$	Output Voltage LM2574HV	$7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 60 \mathrm{~V}, 0.1 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 0.5 \mathrm{~A}$	5	$\begin{aligned} & 4.800 / 4.750 \\ & 5.225 / 5.275 \end{aligned}$	V(Min) V(Max)
η	Efficiency	$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0.5 \mathrm{~A}$	77		\%

(1) All limits specified at room temperature (Standard type face) and at temperature extremes (bold type face). All room temperature limits are 100% production tested. All limits at temperature extremes are specified via correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level.
(2) External components such as the catch diode, inductor, input and output capacitors can affect switching regulator system performance. When the LM2574 is used as shown in the Figure 24 test circuit, system performance will be as shown in system parameters section of Electrical Characteristics.

LM2574-12, LM2574HV-12 Electrical Characteristics

Specifications with standard type face are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range.

Symbol	Parameter	Conditions	$\begin{gathered} \text { LM2574-12 } \\ \text { LM2574HV-12 } \end{gathered}$		Units (Limits)
			Typ	Limit ${ }^{(1)}$	
SYSTEM PARAMETERS Test Circuit in Figure 23 and Figure 24, ${ }^{(2)}$					
$\mathrm{V}_{\text {OUT }}$	Output Voltage	$\mathrm{V}_{\text {IN }}=25 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=100 \mathrm{~mA}$	12	$\begin{aligned} & 11.76 \\ & 12.24 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V}(\operatorname{Min}) \\ \mathrm{V}(\mathrm{Max}) \end{gathered}$
$\mathrm{V}_{\text {OUT }}$	Output Voltage LM2574	$15 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V}, 0.1 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 0.5 \mathrm{~A}$	12	$\begin{aligned} & 11.52 / 11.40 \\ & 12.48 / 12.60 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V}(\operatorname{Min}) \\ \mathrm{V}(\mathrm{Max}) \end{gathered}$
$\mathrm{V}_{\text {OUT }}$	Output Voltage LM2574HV	$15 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 60 \mathrm{~V}, 0.1 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 0.5 \mathrm{~A}$	12	$\begin{aligned} & 11.52 / 11.40 \\ & \text { 12.54/12.66 } \end{aligned}$	$V($ Min $)$ V(Max)
η	Efficiency	$\mathrm{V}_{\mathrm{IN}}=15 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0.5 \mathrm{~A}$	88		\%

(1) All limits specified at room temperature (Standard type face) and at temperature extremes (bold type face). All room temperature limits are 100% production tested. All limits at temperature extremes are specified via correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level.
(2) External components such as the catch diode, inductor, input and output capacitors can affect switching regulator system performance. When the LM2574 is used as shown in the Figure 24 test circuit, system performance will be as shown in system parameters section of Electrical Characteristics.

LM2574-15, LM2574HV-15 Electrical Characteristics

Specifications with standard type face are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating
Temperature Range.

Symbol	Parameter	Conditions	$\begin{gathered} \text { LM2574-15 } \\ \text { LM2574HV-15 } \end{gathered}$		Units(Limits)
			Typ	Limit ${ }^{(1)}$	
SYSTEM PARAMETERS Test Circuit in Figure 23 and Figure 24, ${ }^{(2)}$					
$\mathrm{V}_{\text {OUT }}$	Output Voltage	$\mathrm{V}_{\mathrm{IN}}=30 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=100 \mathrm{~mA}$	15	$\begin{aligned} & 14.70 \\ & 15.30 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V}(\operatorname{Min}) \\ \mathrm{V}(\mathrm{Max}) \end{gathered}$
$\mathrm{V}_{\text {OUT }}$	Output Voltage LM2574	$18 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V}, 0.1 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 0.5 \mathrm{~A}$	15	$\begin{aligned} & 14.40 / 14.25 \\ & 15.60 / 15.75 \end{aligned}$	$\begin{gathered} V \\ V(\operatorname{Min}) \\ \text { V(Max) } \end{gathered}$
$\mathrm{V}_{\text {OUT }}$	Output Voltage LM2574HV	$18 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 60 \mathrm{~V}, 0.1 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 0.5 \mathrm{~A}$	15	$\begin{aligned} & 14.40 / 14.25 \\ & 15.68 / 15.83 \end{aligned}$	V(Min) V(Max)
η	Efficiency	$\mathrm{V}_{\text {IN }}=18 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0.5 \mathrm{~A}$	88		\%

(1) All limits specified at room temperature (Standard type face) and at temperature extremes (bold type face). All room temperature limits are 100% production tested. All limits at temperature extremes are specified via correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level.
(2) External components such as the catch diode, inductor, input and output capacitors can affect switching regulator system performance. When the LM2574 is used as shown in the Figure 24 test circuit, system performance will be as shown in system parameters section of Electrical Characteristics.

LM2574-ADJ, LM2574HV-ADJ Electrical Characteristics

Specifications with standard type face are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating
Temperature Range. Unless otherwise specified, $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$, $\mathrm{I}_{\text {LOAD }}=100 \mathrm{~mA}$.

Symbol	Parameter	Conditions	$\begin{aligned} & \text { LM2574-ADJ } \\ & \text { LM2574HV-ADJ } \end{aligned}$		Units(Limits)
			Typ	Limit ${ }^{(1)}$	
SYSTEM PARAMETERS Test Circuit in Figure 23 and Figure $24{ }^{(2)}$					
$\mathrm{V}_{\text {FB }}$	Feedback Voltage	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=100 \mathrm{~mA}$	1.230	$\begin{aligned} & 1.217 \\ & 1.243 \end{aligned}$	V V(Min) V(Max)
$\mathrm{V}_{\text {FB }}$	Feedback Voltage LM2574	$7 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V}, 0.1 \mathrm{~A} \leq \mathrm{I}_{\mathrm{LOAD}} \leq 0.5 \mathrm{~A}$ $V_{\text {OUT }}$ Programmed for 5V. Circuit of Figure 24	1.230	$\begin{aligned} & 1.193 / 1.180 \\ & 1.267 / 1.280 \\ & \hline \end{aligned}$	V V(Min) V(Max)
$V_{\text {FB }}$	Feedback Voltage LM2574HV	$7 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 60 \mathrm{~V}, 0.1 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 0.5 \mathrm{~A}$	1.230		
		$\mathrm{V}_{\text {OUT }}$ Programmed for 5V. Circuit of Figure 24		$\begin{aligned} & \text { 1.193/1.180 } \\ & \text { 1.273/1.286 } \end{aligned}$	V(Min) V (Max)
η	Efficiency	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0.5 \mathrm{~A}$	77		\%

(1) All limits specified at room temperature (Standard type face) and at temperature extremes (bold type face). All room temperature limits are 100% production tested. All limits at temperature extremes are specified via correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level.
(2) External components such as the catch diode, inductor, input and output capacitors can affect switching regulator system performance. When the LM2574 is used as shown in the Figure 24 test circuit, system performance will be as shown in system parameters section of Electrical Characteristics.

All Output Voltage Versions Electrical Characteristics

Specifications with standard type face are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating
Temperature Range. Unless otherwise specified, $\mathrm{V}_{\mathbb{I N}}=12 \mathrm{~V}$ for the $3.3 \mathrm{~V}, 5 \mathrm{~V}$, and Adjustable version, $\mathrm{V}_{\mathbb{I N}}=25 \mathrm{~V}$ for the 12 V version, and $\mathrm{V}_{\mathrm{IN}}=30 \mathrm{~V}$ for the 15 V version. $\mathrm{I}_{\text {LOAD }}=100 \mathrm{~mA}$.

Symbol	Parameter	Conditions	$\begin{gathered} \text { LM2574-XX } \\ \text { LM2574HV-XX } \end{gathered}$		Units (Limits)
			Typ	Limit ${ }^{(1)}$	
DEVICE PARAMETERS					
I_{b}	Feedback Bias Current	Adjustable Version Only, $\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$	50	100/500	nA
f_{0}	Oscillator Frequency	See ${ }^{(2)}$	52	$\begin{aligned} & 47 / 42 \\ & 58 / 63 \end{aligned}$	$\begin{gathered} \mathrm{kHz} \\ \mathrm{kHz}(\mathrm{Min}) \\ \mathrm{kHz}(\mathrm{Max}) \end{gathered}$
$\mathrm{V}_{\text {SAT }}$	Saturation Voltage	$\mathrm{I}_{\text {OUT }}=0.5 \mathrm{~A}{ }^{(3)}$	0.9	1.2/1.4	$\underset{\mathrm{V}(\max)}{\mathrm{V}}$
DC	Max Duty Cycle (ON)	See ${ }^{(4)}$	98	93	$\begin{gathered} \% \\ \%(\mathrm{Min}) \\ \hline \end{gathered}$
I_{CL}	Current Limit	Peak Current ${ }^{(3)(2)}$	1.0	$\begin{gathered} 0.7 / 0.65 \\ 1.6 / 1.8 \end{gathered}$	$\begin{gathered} \mathrm{A} \\ \mathrm{~A}(\mathrm{Min}) \\ \mathrm{A}(\mathrm{Max}) \end{gathered}$
IL	Current Output Leakage	$\begin{aligned} & \text { Output }=0 \mathrm{~V} \\ & \text { Output }=-1 \mathrm{~V} \\ & \text { Output }=-1 \mathrm{~V}{ }^{(5)(6)} \\ & \hline \end{aligned}$	7.5	$\begin{gathered} 2 \\ 30 \end{gathered}$	$\begin{gathered} \mathrm{mA}(\mathrm{Max}) \\ \mathrm{mA} \\ \mathrm{~mA}(\mathrm{Max}) \end{gathered}$
I_{Q}	Quiescent Current	See ${ }^{(5)}$	5	10	$\underset{\mathrm{mA}(\mathrm{Max})}{\mathrm{mA}}$
$\mathrm{I}_{\text {STBY }}$	Standby Quiescent Current	$\overline{\mathrm{ON}} / \mathrm{OFF}$ Pin $=5 \mathrm{~V}$ (OFF)	50	200	$\begin{gathered} \mu \mathrm{A} \\ \mu \mathrm{~A}(\mathrm{Max}) \end{gathered}$
$\begin{aligned} & \theta_{\mathrm{JA}} \\ & \theta_{\mathrm{JA}} \\ & \theta_{\mathrm{JA}} \\ & \theta_{\mathrm{J}} \end{aligned}$	Thermal Resistance	P Package, Junction to Ambient ${ }^{(7)}$ P Package, Junction to Ambient ${ }^{(8)}$ NPA Package, Junction to Ambient ${ }^{(7)}$ NPA Package, Junction to Ambient ${ }^{(8)}$	$\begin{gathered} 92 \\ 72 \\ 10 \\ 278 \end{gathered}$		${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\overline{\text { ON }}$ /OFF CONTROL Test Circuit Figure 24					
V_{IH}	$\overline{\mathrm{ON}}$ /OFF Pin Logic Input Level	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	1.4	2.2/2.4	V (Min)
$\mathrm{V}_{\text {IL }}$		$\mathrm{V}_{\text {OUT }}=$ Nominal Output Voltage	1.2	1.0/0.8	V (Max)
I_{H}	$\overline{\mathrm{ON}}$ /OFF Pin Input Current	$\overline{\mathrm{ON}} /$ OFF Pin $=5 \mathrm{~V}$ (OFF)	12	30	$\begin{gathered} \mu \mathrm{A} \\ \mu \mathrm{~A}(\mathrm{Max}) \end{gathered}$
IIL		$\overline{\mathrm{ON}} / \mathrm{OFF}$ Pin $=0 \mathrm{~V}(\mathrm{ON})$	0	10	${\underset{\mu A}{\mu}(\mathrm{Max})}^{2}$

(1) All limits specified at room temperature (Standard type face) and at temperature extremes (bold type face). All room temperature limits are 100% production tested. All limits at temperature extremes are specified via correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level.
(2) The oscillator frequency reduces to approximately 18 kHz in the event of an output short or an overload which causes the regulated output voltage to drop approximately 40% from the nominal output voltage. This self protection feature lowers the average power dissipation of the IC by lowering the minimum duty cycle from 5% down to approximately 2%.Figure 9
(3) Output pin sourcing current. No diode, inductor or capacitor connected to output pin.
(4) Feedback pin removed from output and connected to OV.
(5) Feedback pin removed from output and connected to +12 V for the Adjustable, 3.3 V , and 5 V versions, and +25 V for the 12 V and 15 V versions, to force the output transistor OFF.
(6) $\mathrm{V}_{\mathrm{IN}}=40 \mathrm{~V}$ (60V for high voltage version).
(7) Junction to ambient thermal resistance with approximately 1 square inch of printed circuit board copper surrounding the leads. Additional copper area will lower thermal resistance further. See Application Hints in this data sheet and the thermal model in Switchers Made Simple software.
(8) Junction to ambient thermal resistance with approximately 4 square inches of 1 oz . (0.0014 in. thick) printed circuit board copper surrounding the leads. Additional copper area will lower thermal resistance further (See Note 7)

Typical Performance Characteristics

(Circuit of Figure 24)

Figure 4.

Figure 6.

Figure 8.

Figure 5.

Figure 7.

Figure 9.

Typical Performance Characteristics (continued)

(Circuit of Figure 24)

JUNCTION TEMPERATURE (${ }^{\circ} \mathrm{C}$)
Figure 10.

Figure 12.

Figure 11.

Figure 13.

Figure 15.

Typical Performance Characteristics (continued)

(Circuit of Figure 24)

JUNCTION TEMPERATURE (${ }^{\circ} \mathrm{C}$)
Figure 16.

PC BOARD AREA (SQ. IN. OF 1 OZ. COPPER)
Figure 17.

Typical Performance Characteristics
(Circuit of Figure 24)

Continuous Mode Switching Waveforms
$\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}, 500 \mathrm{~mA}$ Load Current, $\mathrm{L}=330 \mu \mathrm{H}$

Notes:
A: Output Pin Voltage, 10V/div
B: Inductor Current, 0.2 A/div
C: Output Ripple Voltage, $20 \mathrm{mV} / \mathrm{div}$,
AC-Coupled
Horizontal Time Base: $5 \mu \mathrm{~s} / \mathrm{div}$
Figure 18.

Notes:

A: Output Voltage, $50 \mathrm{mV} / \mathrm{div}$.
AC Coupled
B: 100 mA to 500 mA Load Pulse
Horizontal Time Base: $200 \mu \mathrm{~s} / \mathrm{div}$
Figure 20.

Discontinuous Mode Switching Waveforms
$V_{\text {OUT }}=5 \mathrm{~V}, 100 \mathrm{~mA}$ Load Current, $\mathrm{L}=100 \mu \mathrm{H}$

Notes:
A: Output Pin Voltage, 10V/div
B: Inductor Current, 0.2 A/div
C: Output Ripple Voltage, $20 \mathrm{mV} / \mathrm{div}$,
AC-Coupled
Horizontal Time Base: $5 \mu \mathrm{~s} / \mathrm{div}$
Figure 19.

Notes:

A: Output Voltage, $50 \mathrm{mV} / \mathrm{div}$.
AC Coupled
B: 50 mA to 250 mA Load Pulse
Horizontal Time Base: $200 \mu \mathrm{~s} / \mathrm{div}$
Figure 21.

Block Diagram

$\mathrm{R} 1=1 \mathrm{k}$
$3.3 \mathrm{~V}, \mathrm{R} 2=1.7 \mathrm{k}$
$5 \mathrm{~V}, \mathrm{R} 2=3.1 \mathrm{k}$
$12 \mathrm{~V}, \mathrm{R} 2=8.84 \mathrm{k}$
$15 \mathrm{~V}, \mathrm{R} 2=11.3 \mathrm{k}$
For Adj. Version
R1 $=$ Open, R2 $=0 \Omega$
Note: Pin numbers are for the 8-pin PDIP package.
Figure 22.

Test Circuit and Layout Guidelines


```
\(\mathrm{C}_{\mathrm{IN}}-22 \mu \mathrm{~F}, 75 \mathrm{~V}\)
            Aluminum Electrolytic
Cout - \(220 \mu \mathrm{~F}, 25 \mathrm{~V}\)
    Aluminum Electrolytic
    D1 - Schottky, 11DQ06
L1 - \(330 \mu \mathrm{H}, 52627\)
    (for 5 V in, 3.3 V out, use
    \(100 \mu \mathrm{H}, \mathrm{RL}-1284-100)\)
R1 - 2k, 0.1\%
```

R2 - 6.12k, 0.1\%

Figure 23. Fixed Output Voltage Versions

$$
V_{\text {OUT }}=V_{\text {REF }}\left(1+\frac{R_{2}}{R_{1}}\right)
$$

$R_{2}=R_{1}\left(\frac{V_{\text {OUT }}}{V_{\text {REF }}}-1\right)$
where $V_{\text {REF }}=1.23 \mathrm{~V}$,
R1 between $1 \mathrm{k} \& 5 \mathrm{k}$.
Figure 24. Adjustable Output Voltage Version

As in any switching regulator, layout is very important. Rapidly switching currents associated with wiring inductance generate voltage transients which can cause problems. For minimal inductance and ground loops, the length of the leads indicated by heavy lines should be kept as short as possible. Single-point grounding (as indicated) or ground plane construction should be used for best results. When using the Adjustable version, physically locate the programming resistors near the regulator, to keep the sensitive feedback wiring short.

Table 1. Inductor Selection by Manufacturer's Part Number

Inductor Value	Pulse Eng.	Renco	NPI
$68 \mu \mathrm{H}$	${ }^{*}$	RL-1284-68-43	NP5915
$100 \mu \mathrm{H}$	${ }^{*}$	RL-1284-100-43	NP5916
$150 \mu \mathrm{H}$	52625	RL-1284-150-43	NP5917
$220 \mu \mathrm{H}$	52626	RL-1284-220-43	NP5918/5919
$330 \mu \mathrm{H}$	52627	RL-1284-330-43	NP5920/5921
$470 \mu \mathrm{H}$	52628	RL-1284-470-43	NP5922
$680 \mu \mathrm{H}$	52629	RL-1283-680-43	NP5923
$1000 \mu \mathrm{H}$	52631	${ }^{*}$	RL-1283-1000-43
$1500 \mu \mathrm{H}$	${ }^{*}$	RL-1283-2200-43	$*$
$2200 \mu \mathrm{H}$		$*$	$*$

LM2574 Series Buck Regulator Design Procedure

PROCEDURE (Fixed Output Voltage Versions)	
Given:	G
$V_{\text {OUT }}=$ Regulated Output Voltage $(3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}$, or 15 V$)$	V
$\mathrm{V}_{\text {IN }}(\operatorname{Max})=$ Maximum Input Voltage	
$\mathrm{I}_{\text {LOAD }}(\operatorname{Max})=$ Maximum Load Current	V
I	$\mathrm{I}_{\text {L }}$

1. Inductor Selection (L1)

A. Select the correct Inductor value selection guide from Figure 25, Figure 26, Figure 27, or Figure 28. (Output voltages of $3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}$ or 15 V respectively). For other output voltages, see the design procedure for the adjustable version.
B. From the inductor value selection guide, identify the inductance region intersected by $\mathrm{V}_{\mathrm{IN}}(\mathrm{Max})$ and $\mathrm{I}_{\text {LOAD }}(\mathrm{Max})$.
C. Select an appropriate inductor from Table 1. Part numbers are listed for three inductor manufacturers. The inductor chosen must be rated for operation at the LM2574 switching frequency (52 kHz) and for a current rating of $1.5 \times \mathrm{I}_{\text {LOAD }}$. For additional inductor information, see INDUCTOR SELECTION in Application Hints of this data sheet.

2. Output Capacitor Selection ($\mathrm{C}_{\text {OUT }}$)

A. The value of the output capacitor together with the inductor defines the dominate pole-pair of the switching regulator loop. For stable operation and an acceptable output ripple voltage, (approximately 1% of the output voltage) a value between $100 \mu \mathrm{~F}$ and $470 \mu \mathrm{~F}$ is recommended.
B. The capacitor's voltage rating should be at least 1.5 times greater than the output voltage. For a 5 V regulator, a rating of at least 8 V is appropriate, and a 10 V or 15 V rating is recommended.
Higher voltage electrolytic capacitors generally have lower ESR numbers, and for this reason it may be necessary to select a capacitor rated for a higher voltage than would normally be needed.

3. Catch Diode Selection (D1)

A. The catch-diode current rating must be at least 1.5 times greater than the maximum load current. Also, if the power supply design must withstand a continuous output short, the diode should have a current rating equal to the maximum current limit of the LM2574. The most stressful condition for this diode is an overload or shorted output condition.
B. The reverse voltage rating of the diode should be at least 1.25 times the maximum input voltage.

4. Input Capacitor (C_{IN})

An aluminum or tantalum electrolytic bypass capacitor located close to the regulator is needed for stable operation.

EXAMPLE (Fixed Output Voltage Versions)

Given:

$\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$
$\mathrm{V}_{\text {IN }}(\operatorname{Max})=15 \mathrm{~V}$
$\mathrm{l}_{\text {LOAD }}(\mathrm{Max})=0.4 \mathrm{~A}$

1. Inductor Selection (L1)

A. Use the selection guide shown in Figure 26.
B. From the selection guide, the inductance area intersected by the 15 V line and 0.4 A line is 330 .
C. Inductor value required is $330 \mu \mathrm{H}$. From Table 1, choose Pulse Engineering PE-52627, Renco RL-1284-330, or NPI NP5920/5921.

2. Output Capacitor Selection ($\mathrm{C}_{\text {OUT }}$)

A. $\mathrm{C}_{\text {OUt }}=100 \mu \mathrm{~F}$ to $470 \mu \mathrm{~F}$ standard aluminum electrolytic.
B. Capacitor voltage rating $=20 \mathrm{~V}$.

3. Catch Diode Selection (D1)

A. For this example, a 1A current rating is adequate.
B. Use a 20 V 1N5817 or SR102 Schottky diode, or any of the suggested fast-recovery diodes shown in Table 2.

4. Input Capacitor (C_{IN})

A $22 \mu \mathrm{~F}$ aluminum electrolytic capacitor located near the input and ground pins provides sufficient bypassing.

INDUCTOR VALUE SELECTION GUIDES

(For Continuous Mode Operation)

Figure 25. LM2574HV-3.3 Inductor Selection Guide

Figure 27. LM2574HV-12 Inductor Selection Guide

Figure 26. LM2574HV-5.0 Inductor Selection Guide

Figure 28. LM2574HV-15 Inductor Selection Guide

Figure 29. LM2574HV-ADJ Inductor Selection Guide

PROCEDURE (Adjustable Output Voltage Versions)	EXAMPLE (Adjustable Output Voltage Versions)
Given: $\mathrm{V}_{\text {OUT }}=$ Regulated Output Voltage $\mathrm{V}_{\mathrm{IN}}($ Max $)=$ Maximum Input Voltage $\mathrm{I}_{\text {LOAD }}($ Max $)=$ Maximum Load Current F = Switching Frequency (Fixed at 52 kHz)	Given: $\begin{aligned} & \mathrm{V}_{\text {OUT }}=24 \mathrm{~V} \\ & \mathrm{~V}_{\text {IN }}(\operatorname{Max})=40 \mathrm{~V} \\ & \mathrm{I}_{\text {LOAD }}(\mathrm{Max})=0.4 \mathrm{~A} \\ & \mathrm{~F}=52 \mathrm{kHz} \\ & \hline \end{aligned}$
1. Programming Output Voltage (Selecting R1 and R2, as shown in Figure 24) Use the following formula to select the appropriate resistor values. $V_{\text {OUT }}=V_{\text {REF }}\left(1+\frac{R_{2}}{R_{1}}\right) \quad \text { where } V_{\text {REF }}=1.23 V$ R_{1} can be between 1 k and 5 k . (For best temperature coefficient and stability with time, use 1% metal film resistors) $R_{2}=R_{1}\left(\frac{V_{\mathrm{OUT}}}{V_{\mathrm{REF}}}-1\right)$	1. Programming Output Voltage (Selecting R1 and R2) $\begin{gathered} V_{\text {OUT }}=1.23\left(1+\frac{R_{2}}{R_{1}}\right) \quad \text { Select } R 1=1 \mathrm{k} \\ R_{2}=R_{1}\left(\frac{V_{\text {OUT }}}{V_{\text {REF }}}-1\right)=1 \mathrm{k}\left(\frac{24 \mathrm{~V}}{1.23 \mathrm{~V}}-1\right) \\ R_{2}=1 \mathrm{k}(19.51-1)=18.51 \mathrm{k} \text {, closest } 1 \% \text { value is } 18.7 \mathrm{k} \end{gathered}$
2. Inductor Selection (L1) A. Calculate the inductor Volt • microsecond constant, $\mathrm{E} \cdot \mathrm{T}(\mathrm{V} \cdot \mu \mathrm{s})$, from the following formula: $\mathrm{E} \cdot \mathrm{~T}=\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right) \frac{\mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\text {IN }}} \cdot \frac{1000}{\mathrm{~F}(\text { in } k H z)}(\mathrm{V} \cdot \mu \mathrm{~s})$ B. Use the E•T value from the previous formula and match it with the E - T number on the vertical axis of the Inductor Value Selection Guide shown in Figure 29. C. On the horizontal axis, select the maximum load current. D. Identify the inductance region intersected by the E•T value and the maximum load current value, and note the inductor value for that region. E. Select an appropriate inductor from the table shown in Table 1. Part numbers are listed for three inductor manufacturers. The inductor chosen must be rated for operation at the LM2574 switching frequency (52 kHz) and for a current rating of $1.5 \times \mathrm{I}$ LOAD. For additional inductor information, see INDUCTOR SELECTION in Application Hints of this data sheet.	2. Inductor Selection (L1) A. Calculate E•T (V• $\mu \mathrm{s}$) $E \cdot T=(40-24) \cdot \frac{24}{40} \cdot \frac{1000}{52}=185 \mathrm{~V} \cdot \mu \mathrm{~S}$ B. $E \cdot T=185 \mathrm{~V} \cdot \mu \mathrm{~s}$ C. $\mathrm{I}_{\text {LOAD }}(\mathrm{Max})=0.4 \mathrm{~A}$ D. Inductance Region $=1000$ E. Inductor Value $=1000 \mu \mathrm{H}$ Choose from Pulse Engineering Part \#PE-52631, or Renco Part \#RL-1283-1000.
3. Output Capacitor Selection (Cout) A. The value of the output capacitor together with the inductor defines the dominate pole-pair of the switching regulator loop. For stable operation, the capacitor must satisfy the following requirement: $\mathrm{C}_{\text {OUT }} \geq 13,300 \frac{\mathrm{~V}_{\text {IN }}(\mathrm{Max})}{\mathrm{V}_{\text {OUT }} \cdot \mathrm{L}(\mu \mathrm{H})}(\mu \mathrm{F})$ The above formula yields capacitor values between $5 \mu \mathrm{~F}$ and 1000 $\mu \mathrm{F}$ that will satisfy the loop requirements for stable operation. But to achieve an acceptable output ripple voltage, (approximately 1% of the output voltage) and transient response, the output capacitor may need to be several times larger than the above formula yields. B. The capacitor's voltage rating should be at last 1.5 times greater than the output voltage. For a 24 V regulator, a rating of at least 35 V is recommended. Higher voltage electrolytic capacitors generally have lower ESR numbers, and for this reasion it may be necessary to select a capacitor rate for a higher voltage than would normally be needed.	3. Output Capacitor Selection (Cout) A. $\mathrm{C}_{\text {OUT }}>13,300 \frac{40}{24 \cdot 1000}=22.2 \mu \mathrm{~F}$ However, for acceptable output ripple voltage select $\mathrm{C}_{\text {OUT }} \geq 100 \mu \mathrm{~F}$ $\mathrm{C}_{\text {OUT }}=100 \mu \mathrm{~F}$ electrolytic capacitor

PROCEDURE (Adjustable Output Voltage Versions)	EXAMPLE (Adjustable Output Voltage Versions)
4. Catch Diode Selection (D1) A. The catch-diode current rating must be at least 1.5 times greater than the maximum load current. Also, if the power supply design must withstand a continuous output short, the diode should have a current rating equal to the maximum current limit of the LM2574. The most stressful condition for this diode is an overload or shorted output condition. Suitable diodes are shown in Table 2. B. The reverse voltage rating of the diode should be at least 1.25 times the maximum input voltage.	4. Catch Diode Selection (D1) A. For this example, a 1 A current rating is adequate. B. Use a 50 V MBR150 or 11DQ05 Schottky diode, or any of the suggested fast-recovery diodes in Table 2.
5. Input Capacitor (C_{IN}) An aluminum or tantalum electrolytic bypass capacitor located close to the regulator is needed for stable operation.	5. Input Capacitor (C_{IN}) A $22 \mu \mathrm{~F}$ aluminum electrolytic capacitor located near the input and ground pins provides sufficient bypassing. (See Table 2). To further simplify the buck regulator design procedure, TI is making available computer design software to be used with the Simple Switcher line of switching regulators. Switchers Made Simple (version 3.3) is available on a ($3^{112} 2^{\prime \prime}$) diskette for IBM compatible computers from a TI sales office in your area.

Table 2. Diode Selection Guide

V_{R}	1 Amp Diodes	
	Schottky	Fast Recovery
20 V	$\begin{gathered} \hline \text { 1N5817 } \\ \text { SR102 } \\ \text { MBR120P } \end{gathered}$	The following diodes are all rated to 100 V$\begin{gathered} \text { 11DF1 } \\ \text { 10JF1 } \\ \text { MUR110 } \\ \text { HER102 } \end{gathered}$
30V	$\begin{gathered} \hline \text { 1N5818 } \\ \text { SR103 } \\ \text { 11DQ03 } \\ \text { MBR130P } \\ \text { 10JQ030 } \end{gathered}$	
40V	$\begin{gathered} \hline \text { 1N5819 } \\ \text { SR104 } \\ \text { 11DQ04 } \\ \text { 11JQ04 } \\ \text { MBR140P } \end{gathered}$	
50V	MBR150 SR105 11DQ05 11JQ05	
60V	MBR160 SR106 11DQ06 11JQ06	
90 V	11DQ09	

APPLICATION HINTS

INPUT CAPACITOR (CIN

To maintain stability, the regulator input pin must be bypassed with at least a $22 \mu \mathrm{~F}$ electrolytic capacitor. The capacitor's leads must be kept short, and located near the regulator.
If the operating temperature range includes temperatures below $-25^{\circ} \mathrm{C}$, the input capacitor value may need to be larger. With most electrolytic capacitors, the capacitance value decreases and the ESR increases with lower temperatures and age. Paralleling a ceramic or solid tantalum capacitor will increase the regulator stability at cold temperatures. For maximum capacitor operating lifetime, the capacitor's RMS ripple current rating should be greater than
$1.2 \times\left(\frac{\mathrm{t}_{\mathrm{ON}}}{\mathrm{T}}\right) \times \mathrm{I}_{\text {LOAD }}$
where $\frac{\mathrm{t}_{\text {ON }}}{T}=\frac{\mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\text {IN }}}$ for a buck regulator
and $\frac{\mathrm{t}_{\text {ON }}}{T}=\frac{\left|V_{\text {Out }}\right|}{\left|V_{\text {OUT }}\right|+V_{\text {IN }}}$ for a buck-boost regulator.

INDUCTOR SELECTION

All switching regulators have two basic modes of operation: continuous and discontinuous. The difference between the two types relates to the inductor current, whether it is flowing continuously, or if it drops to zero for a period of time in the normal switching cycle. Each mode has distinctively different operating characteristics, which can affect the regulator performance and requirements.
The LM2574 (or any of the Simple Switcher family) can be used for both continuous and discontinuous modes of operation.

In many cases the preferred mode of operation is in the continuous mode. It offers better load regulation, lower peak switch, inductor and diode currents, and can have lower output ripple voltage. But it does require relatively large inductor values to keep the inductor current flowing continuously, especially at low output load currents.

To simplify the inductor selection process, an inductor selection guide (nomograph) was designed (see Figure 25 through Figure 29). This guide assumes continuous mode operation, and selects an inductor that will allow a peak-to-peak inductor ripple current ($\Delta \mathrm{I}_{\mathrm{IND}}$) to be a certain percentage of the maximum design load current. In the LM2574 SIMPLE SWITCHER, the peak-to-peak inductor ripple current percentage (of load current) is allowed to change as different design load currents are selected. By allowing the percentage of inductor ripple current to increase for lower current applications, the inductor size and value can be kept relatively low.

INDUCTOR RIPPLE CURRENT

When the switcher is operating in the continuous mode, the inductor current waveform ranges from a triangular to a sawtooth type of waveform (depending on the input voltage). For a given input voltage and output voltage, the peak-to-peak amplitude of this inductor current waveform remains constant. As the load current rises or falls, the entire sawtooth current waveform also rises or falls. The average DC value of this waveform is equal to the DC load current (in the buck regulator configuration).
If the load current drops to a low enough level, the bottom of the sawtooth current waveform will reach zero, and the switcher will change to a discontinuous mode of operation. This is a perfectly acceptable mode of operation. Any buck switching regulator (no matter how large the inductor value is) will be forced to run discontinuous if the load current is light enough.

The curve shown in Figure 30 illustrates how the peak-to-peak inductor ripple current ($\Delta \mathrm{I}_{\mathrm{IND}}$) is allowed to change as different maximum load currents are selected, and also how it changes as the operating point varies from the upper border to the lower border within an inductance region (see INDUCTOR SELECTION).

Figure 30. Inductor Ripple Current ($\Delta \mathrm{I}_{\mathrm{IND}}$) Range Based on Selection Guides from Figure 25 through Figure 29.

Consider the following example:

$$
\begin{aligned}
& \mathrm{V}_{\text {OUT }}=5 \mathrm{~V} @ 0.4 \mathrm{~A} \\
& \mathrm{~V}_{\mathrm{IN}}=10 \mathrm{~V} \text { minimum up to } 20 \mathrm{~V} \text { maximum }
\end{aligned}
$$

The selection guide in Figure 26 shows that for a 0.4 A load current, and an input voltage range between 10 V and 20 V , the inductance region selected by the guide is $330 \mu \mathrm{H}$. This value of inductance will allow a peak-to-peak inductor ripple current ($\Delta \mathrm{I}_{\mathrm{ND}}$) to flow that will be a percentage of the maximum load current. For this inductor value, the $\Delta \mathrm{l}_{\mathrm{IND}}$ will also vary depending on the input voltage. As the input voltage increases to 20 V , it approaches the upper border of the inductance region, and the inductor ripple current increases. Referring to the curve in Figure 30, it can be seen that at the 0.4 A load current level, and operating near the upper border of the $330 \mu \mathrm{H}$ inductance region, the $\Delta \mathrm{I}_{\mathrm{IND}}$ will be 53% of 0.4 A , or $212 \mathrm{~mA} \mathrm{p}-\mathrm{p}$.
This $\Delta \mathrm{I}_{\mathrm{IND}}$ is important because from this number the peak inductor current rating can be determined, the minimum load current required before the circuit goes to discontinuous operation, and also, knowing the ESR of the output capacitor, the output ripple voltage can be calculated, or conversely, measuring the output ripple voltage and knowing the $\Delta \mathrm{I}_{\mathrm{IND}}$, the ESR can be calculated.

From the previous example, the Peak-to-peak Inductor Ripple Current $\left(\Delta_{\text {IND }}\right)=212 \mathrm{~mA} \mathrm{p}$-p. Once the $\Delta_{\text {IND }}$ value is known, the following three formulas can be used to calculate additional information about the switching regulator circuit:

1. Peak Inductor or peak switch current
$=\left(\right.$ LOAA $\left.+\frac{\Delta I_{\text {IND }}}{2}\right)=\left(0.4 \mathrm{~A}+\frac{212}{2}\right)=506 \mathrm{~mA}$
2. Minimum load current before the circuit becomes discontinuous
$=\frac{\Delta l_{\mathrm{ND}}}{2}=\frac{212}{2}=106 \mathrm{~mA}$
3. Output Ripple Voltage $=\left(\Delta \mathrm{I}_{\mathrm{IND}}\right) \times\left(\mathrm{ESR}\right.$ of $\left.\mathrm{C}_{\mathrm{OUT}}\right)$

The selection guide chooses inductor values suitable for continuous mode operation, but if the inductor value chosen is prohibitively high, the designer should investigate the possibility of discontinuous operation. The computer design software Switchers Made Simple will provide all component values for discontinuous (as well as continuous) mode of operation.
Inductors are available in different styles such as pot core, toroid, E-frame, bobbin core, etc., as well as different core materials, such as ferrites and powdered iron. The least expensive, the bobbin core type, consists of wire wrapped on a ferrite rod core. This type of construction makes for an inexpensive inductor, but since the magnetic flux is not completely contained within the core, it generates more electro-magnetic interference (EMI). This EMI can cause problems in sensitive circuits, or can give incorrect scope readings because of induced voltages in the scope probe.
The inductors listed in the selection chart include powdered iron toroid for Pulse Engineering, and ferrite bobbin core for Renco.
An inductor should not be operated beyond its maximum rated current because it may saturate. When an inductor begins to saturate, the inductance decreases rapidly and the inductor begins to look mainly resistive (the DC resistance of the winding). This can cause the inductor current to rise very rapidly and will affect the energy storage capabilities of the inductor and could cause inductor overheating. Different inductor types have different saturation characteristics, and this should be kept in mind when selecting an inductor. The inductor manufacturers' data sheets include current and energy limits to avoid inductor saturation.

OUTPUT CAPACITOR

An output capacitor is required to filter the output voltage and is needed for loop stability. The capacitor should be located near the LM2574 using short pc board traces. Standard aluminum electrolytics are usually adequate, but low ESR types are recommended for low output ripple voltage and good stability. The ESR of a capacitor depends on many factors, some which are: the value, the voltage rating, physical size and the type of construction. In general, low value or low voltage (less than 12V) electrolytic capacitors usually have higher ESR numbers.
The amount of output ripple voltage is primarily a function of the ESR (Equivalent Series Resistance) of the output capacitor and the amplitude of the inductor ripple current ($\Delta \mathrm{I}_{\mathrm{IND}}$). See INDUCTOR RIPPLE CURRENT $\left(\Delta \mathrm{I}_{\mathrm{ND}}\right)$ in Application Hints.
The lower capacitor values ($100 \mu \mathrm{~F}-330 \mu \mathrm{~F}$) will allow typically 50 mV to 150 mV of output ripple voltage, while larger-value capacitors will reduce the ripple to approximately 20 mV to 50 mV .
Output Ripple Voltage $=\left(\Delta \mathrm{I}_{\text {IND }}\right)\left(E S R\right.$ of $\left.\mathrm{C}_{\mathrm{OUT}}\right)$
To further reduce the output ripple voltage, several standard electrolytic capacitors may be paralleled, or a higher-grade capacitor may be used. Such capacitors are often called "high-frequency," "low-inductance," or "low-ESR." These will reduce the output ripple to 10 mV or 20 mV . However, when operating in the continuous mode, reducing the ESR below 0.03Ω can cause instability in the regulator.
Tantalum capacitors can have a very low ESR, and should be carefully evaluated if it is the only output capacitor. Because of their good low temperature characteristics, a tantalum can be used in parallel with aluminum electrolytics, with the tantalum making up 10% or 20% of the total capacitance.
The capacitor's ripple current rating at 52 kHz should be at least 50% higher than the peak-to-peak inductor ripple current.

CATCH DIODE

Buck regulators require a diode to provide a return path for the inductor current when the switch is off. This diode should be located close to the LM2574 using short leads and short printed circuit traces.
Because of their fast switching speed and low forward voltage drop, Schottky diodes provide the best efficiency, especially in low output voltage switching regulators (less than 5V). Fast-Recovery, High-Efficiency, or Ultra-Fast Recovery diodes are also suitable, but some types with an abrupt turn-off characteristic may cause instability and EMI problems. A fast-recovery diode with soft recovery characteristics is a better choice. Standard 60 Hz diodes (e.g., 1 N4001 or 1N5400, etc.) are also not suitable. See Table 2 for Schottky and "soft" fast-recovery diode selection guide.

OUTPUT VOLTAGE RIPPLE AND TRANSIENTS

The output voltage of a switching power supply will contain a sawtooth ripple voltage at the switcher frequency, typically about 1% of the output voltage, and may also contain short voltage spikes at the peaks of the sawtooth waveform.
The output ripple voltage is due mainly to the inductor sawtooth ripple current multiplied by the ESR of the output capacitor. (See INDUCTOR SELECTION in Application Hints.)
The voltage spikes are present because of the fast switching action of the output switch, and the parasitic inductance of the output filter capacitor. To minimize these voltage spikes, special low inductance capacitors can be used, and their lead lengths must be kept short. Wiring inductance, stray capacitance, as well as the scope probe used to evaluate these transients, all contribute to the amplitude of these spikes.
An additional small LC filter ($20 \mu \mathrm{H} \& 100 \mu \mathrm{~F}$) can be added to the output (as shown in Figure 36) to further reduce the amount of output ripple and transients. A $10 \times$ reduction in output ripple voltage and transients is possible with this filter.

FEEDBACK CONNECTION

The LM2574 (fixed voltage versions) feedback pin must be wired to the output voltage point of the switching power supply. When using the adjustable version, physically locate both output voltage programming resistors near the LM2574 to avoid picking up unwanted noise. Avoid using resistors greater than $100 \mathrm{k} \Omega$ because of the increased chance of noise pickup.

$\overline{\text { ON }}$ /OFF INPUT

For normal operation, the $\overline{\mathrm{ON}}$ /OFF pin should be grounded or driven with a low-level TTL voltage (typically below 1.6 V). To put the regulator into standby mode, drive this pin with a high-level TTL or CMOS signal. The $\overline{\mathrm{ON}} / \mathrm{OFF}$ pin can be safely pulled up to $+\mathrm{V}_{\mathrm{IN}}$ without a resistor in series with it. The $\overline{\mathrm{ON}} / \mathrm{OFF}$ pin should not be left open.

GROUNDING

The 8-pin molded PDIP and the 14-pin SOIC package have separate power and signal ground pins. Both ground pins should be soldered directly to wide printed circuit board copper traces to assure low inductance connections and good thermal properties.

THERMAL CONSIDERATIONS

The 8-pin PDIP (P) package and the 14-pin SOIC (NPA) package are molded plastic packages with solid copper lead frames. The copper lead frame conducts the majority of the heat from the die, through the leads, to the printed circuit board copper, which acts as the heat sink. For best thermal performance, wide copper traces should be used, and all ground and unused pins should be soldered to generous amounts of printed circuit board copper, such as a ground plane. Large areas of copper provide the best transfer of heat (lower thermal resistance) to the surrounding air, and even double-sided or multilayer boards provide better heat paths to the surrounding air. Unless the power levels are small, using a socket for the 8 -pin package is not recommended because of the additional thermal resistance it introduces, and the resultant higher junction temperature.

Because of the 0.5 A current rating of the LM2574, the total package power dissipation for this switcher is quite low, ranging from approximately 0.1 W up to 0.75 W under varying conditions. In a carefully engineered printed circuit board, both the P and the NPA package can easily dissipate up to 0.75 W , even at ambient temperatures of $60^{\circ} \mathrm{C}$, and still keep the maximum junction temperature below $125^{\circ} \mathrm{C}$.

A curve, Figure 17, displaying thermal resistance vs. pc board area for the two packages is shown in Typical Performance Characteristics of this data sheet.
These thermal resistance numbers are approximate, and there can be many factors that will affect the final thermal resistance. Some of these factors include board size, shape, thickness, position, location, and board temperature. Other factors are, the area of printed circuit copper, copper thickness, trace width, multi-layer, single- or double-sided, and the amount of solder on the board. The effectiveness of the pc board to dissipate heat also depends on the size, number and spacing of other components on the board. Furthermore, some of these components, such as the catch diode and inductor will generate some additional heat. Also, the thermal resistance decreases as the power level increases because of the increased air current activity at the higher power levels, and the lower surface to air resistance coefficient at higher temperatures.
The data sheet thermal resistance curves and the thermal model in Switchers Made Simple software (version 3.3) can estimate the maximum junction temperature based on operating conditions. In addition, the junction temperature can be estimated in actual circuit operation by using the following equation.
$\mathrm{T}_{\mathrm{j}}=\mathrm{T}_{\mathrm{cu}}+\left(\theta_{\mathrm{j} \text { cu }} \times \mathrm{P}_{\mathrm{D}}\right)$
With the switcher operating under worst case conditions and all other components on the board in the intended enclosure, measure the copper temperature (T_{cu}) near the IC. This can be done by temporarily soldering a small thermocouple to the pc board copper near the IC, or by holding a small thermocouple on the pc board copper using thermal grease for good thermal conduction.
The thermal resistance $\left(\theta_{j \text { jul }}\right)$ for the two packages is:
$\theta_{j-\text { cu }}=42^{\circ} \mathrm{C} / \mathrm{W}$ for the P-8 package
$\theta_{\mathrm{j} \text {-cu }}=52^{\circ} \mathrm{C} / \mathrm{W}$ for the NPA-14 package
The power dissipation $\left(\mathrm{P}_{\mathrm{D}}\right)$ for the IC could be measured, or it can be estimated by using the formula:
where

- I_{S} is obtained from the typical supply current curve (adjustable version use the supply current vs. duty cycle curve).

$$
\begin{equation*}
P_{\mathrm{D}}=\left(\mathrm{V}_{\mathrm{IN}}\right)\left(\mathrm{I}_{\mathrm{S}}\right)+\left(\frac{\mathrm{V}_{\mathrm{O}}}{\mathrm{~V}_{\mathrm{IN}}}\right)\left(\mathrm{L}_{\text {LOAD }}\right)\left(\mathrm{V}_{\text {SAT }}\right) \tag{5}
\end{equation*}
$$

Additional Applications

INVERTING REGULATOR

Figure 31 shows a LM2574-12 in a buck-boost configuration to generate a negative 12V output from a positive input voltage. This circuit bootstraps the regulator's ground pin to the negative output voltage, then by grounding the feedback pin, the regulator senses the inverted output voltage and regulates it to -12 V .

Note: Pin numbers are for the 8-pin PDIP package.
Figure 31. Inverting Buck-Boost Develops -12V

For an input voltage of 8 V or more, the maximum available output current in this configuration is approximately 100 mA . At lighter loads, the minimum input voltage required drops to approximately 4.7V.
The switch currents in this buck-boost configuration are higher than in the standard buck-mode design, thus lowering the available output current. Also, the start-up input current of the buck-boost converter is higher than the standard buck-mode regulator, and this may overload an input power source with a current limit less than 0.6 A . Using a delayed turn-on or an undervoltage lockout circuit (described in the next section) would allow the input voltage to rise to a high enough level before the switcher would be allowed to turn on.
Because of the structural differences between the buck and the buck-boost regulator topologies, the LM2574 Series Buck Regulator Design Procedure can not be used to select the inductor or the output capacitor. The recommended range of inductor values for the buck-boost design is between $68 \mu \mathrm{H}$ and $220 \mu \mathrm{H}$, and the output capacitor values must be larger than what is normally required for buck designs. Low input voltages or high output currents require a large value output capacitor (in the thousands of micro Farads).

The peak inductor current, which is the same as the peak switch current, can be calculated from the following formula:
where

- $\mathrm{f}_{\text {osc }}=52 \mathrm{kHz}$. Under normal continuous inductor current operating conditions,
- the minimum V_{IN} represents the worst case. Select an inductor that is rated for the peak current anticipated.

$$
\begin{equation*}
\mathrm{I}_{\mathrm{p}} \approx \frac{\operatorname{ILOAD}\left(\mathrm{~V}_{\text {IN }}+\left|V_{\mathrm{O}}\right|\right)}{V_{\text {IN }}}+\frac{\mathrm{V}_{\text {IN }}\left|V_{\mathrm{O}}\right|}{V_{\text {IN }}+\left|V_{\mathrm{O}}\right|} \times \frac{1}{2 L_{1} \mathrm{f}_{\mathrm{OSC}}} \tag{6}
\end{equation*}
$$

Also, the maximum voltage appearing across the regulator is the absolute sum of the input and output voltage. For a -12 V output, the maximum input voltage for the LM2574 is +28 V , or +48 V for the LM2574HV.
The Switchers Made Simple version 3.3) design software can be used to determine the feasibility of regulator designs using different topologies, different input-output parameters, different components, etc.

NEGATIVE BOOST REGULATOR

Another variation on the buck-boost topology is the negative boost configuration. The circuit in Figure 32 accepts an input voltage ranging from -5 V to -12 V and provides a regulated -12 V output. Input voltages greater than -12 V will cause the output to rise above -12 V , but will not damage the regulator.

Note: Pin numbers are for 8 -pin PDIP package.
Figure 32. Negative Boost
Because of the boosting function of this type of regulator, the switch current is relatively high, especially at low input voltages. Output load current limitations are a result of the maximum current rating of the switch. Also, boost regulators can not provide current limiting load protection in the event of a shorted load, so some other means (such as a fuse) may be necessary.

UNDERVOLTAGE LOCKOUT

In some applications it is desirable to keep the regulator off until the input voltage reaches a certain threshold. An undervoltage lockout circuit which accomplishes this task is shown in Figure 33 while Figure 34 shows the same circuit applied to a buck-boost configuration. These circuits keep the regulator off until the input voltage reaches a predetermined level.
$\mathrm{V}_{\mathrm{TH}} \approx \mathrm{V}_{\mathrm{Z} 1}+2 \mathrm{~V}_{\mathrm{BE}}(\mathrm{Q} 1)$

Note: Complete circuit not shown (see Figure 31).
Note: Pin numbers are for 8-pin PDIP package.
Figure 33. Undervoltage Lockout for Buck Circuit

Note: Complete circuit not shown (see Figure 31).
Note: Pin numbers are for 8-pin PDIP package.

Figure 34. Undervoltage Lockout for Buck-Boost Circuit

DELAYED STARTUP

The $\overline{\mathrm{ON}}$ /OFF pin can be used to provide a delayed startup feature as shown in Figure 35. With an input voltage of 20 V and for the part values shown, the circuit provides approximately 10 ms of delay time before the circuit begins switching. Increasing the RC time constant can provide longer delay times. But excessively large RC time constants can cause problems with input voltages that are high in 60 Hz or 120 Hz ripple, by coupling the ripple into the ON /OFF pin.

ADJUSTABLE OUTPUT, LOW-RIPPLE POWER SUPPLY

A 500 mA power supply that features an adjustable output voltage is shown in Figure 36. An additional L-C filter that reduces the output ripple by a factor of 10 or more is included in this circuit.

Note: Complete circuit not shown.
Note: Pin numbers are for 8-pin PDIP package.
Figure 35. Delayed Startup

Note: Pin numbers are for 8-pin PDIP package.
Figure 36. 1.2V to 55V Adjustable 500 mA Power Supply with Low Output Ripple

Definition of Terms

BUCK REGULATOR

A switching regulator topology in which a higher voltage is converted to a lower voltage. Also known as a stepdown switching regulator.

BUCK-BOOST REGULATOR

A switching regulator topology in which a positive voltage is converted to a negative voltage without a transformer.

DUTY CYCLE (D)

Ratio of the output switch's on-time to the oscillator period.

$$
\begin{array}{rlrl}
\text { for buck regulator } & D & =\frac{t_{O N}}{T} & =\frac{V_{O U T}}{V_{I N}} \\
\text { for buck-boost regulator } & D & =\frac{t_{O N}}{T}=\frac{\left|V_{O}\right|}{\left|V_{O}\right|+V_{I N}} \tag{7}
\end{array}
$$

CATCH DIODE OR CURRENT STEERING DIODE

The diode which provides a return path for the load current when the LM2574 switch is OFF.

EFFICIENCY ($\boldsymbol{\eta}$)

The proportion of input power actually delivered to the load.

$$
\begin{equation*}
\eta=\frac{\text { Pout }}{P_{\text {IN }}}=\frac{\text { Pout }}{\text { Pout }+P_{\text {LOSS }}} \tag{8}
\end{equation*}
$$

CAPACITOR EQUIVALENT SERIES RESISTANCE (ESR)

The purely resistive component of a real capacitor's impedance (see Figure 37). It causes power loss resulting in capacitor heating, which directly affects the capacitor's operating lifetime. When used as a switching regulator output filter, higher ESR values result in higher output ripple voltages.

Figure 37. Simple Model of a Real Capacitor
Most standard aluminum electrolytic capacitors in the $100 \mu \mathrm{~F}-1000 \mu \mathrm{~F}$ range have 0.5Ω to $0.1 \Omega \mathrm{ESR}$. Highergrade capacitors ("low-ESR", "high-frequency", or "low-inductance") in the $100 \mu \mathrm{~F}-1000 \mu \mathrm{~F}$ range generally have ESR of less than 0.15Ω.

EQUIVALENT SERIES INDUCTANCE (ESL)

The pure inductance component of a capacitor (see Figure 37). The amount of inductance is determined to a large extent on the capacitor's construction. In a buck regulator, this unwanted inductance causes voltage spikes to appear on the output.

OUTPUT RIPPLE VOLTAGE

The AC component of the switching regulator's output voltage. It is usually dominated by the output capacitor's ESR multiplied by the inductor's ripple current ($\Delta I_{\text {IND }}$). The peak-to-peak value of this sawtooth ripple current can be determined by readingINDUCTOR RIPPLE CURRENT ($\Delta \mathrm{I}_{\text {IND }}$) of Application Hints.

CAPACITOR RIPPLE CURRENT

RMS value of the maximum allowable alternating current at which a capacitor can be operated continuously at a specified temperature.

STANDBY QUIESCENT CURRENT (I ${ }_{\text {stby }}$)

Supply current required by the LM2574 when in the standby mode ($\overline{\mathrm{ON}} / \mathrm{OFF}$ pin is driven to TTL-high voltage, thus turning the output switch OFF).

INDUCTOR RIPPLE CURRENT ($\Delta \mathrm{I}_{\mathrm{IND}}$)

The peak-to-peak value of the inductor current waveform, typically a sawtooth waveform when the regulator is operating in the continuous mode (vs. discontinuous mode).

CONTINUOUS/DISCONTINUOUS MODE OPERATION

Relates to the inductor current. In the continuous mode, the inductor current is always flowing and never drops to zero, vs. the discontinuous mode, where the inductor current drops to zero for a period of time in the normal switching cycle.

INDUCTOR SATURATION

The condition which exists when an inductor cannot hold any more magnetic flux. When an inductor saturates, the inductor appears less inductive and the resistive component dominates. Inductor current is then limited only by the $D C$ resistance of the wire and the available source current.

OPERATING VOLT MICROSECOND CONSTANT (E•T ${ }_{\text {op }}$)

The product (in Volt• $\mu \mathrm{s}$) of the voltage applied to the inductor and the time the voltage is applied. This $\mathrm{E} \cdot \mathrm{T}_{\text {op }}$ constant is a measure of the energy handling capability of an inductor and is dependent upon the type of core, the core area, the number of turns, and the duty cycle.

REVISION HISTORY

- Changed layout of National Data Sheet to TI format .. 25
ria Texas Instruments

PACKAGE OPTION ADDENDUM
www.ti.com

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
LM2574HVM-12	NRND	SOIC	NPA	14	50	TBD	Call TI	Call TI	-40 to 125	$\begin{aligned} & \text { LM2574HVM } \\ & -12 \mathrm{P}_{+} \end{aligned}$	
LM2574HVM-12/NOPB	ACTIVE	SOIC	NPA	14	50	Green (RoHS \& no Sb/Br)	CU SN	Level-3-260C-168 HR	-40 to 125	$\begin{aligned} & \text { LM2574HVM } \\ & -12 \mathrm{P}_{+} \end{aligned}$	Samples
LM2574HVM-15	NRND	SOIC	NPA	14	50	TBD	Call TI	Call TI	-40 to 125	$\begin{aligned} & \text { LM2574HVM } \\ & -15 \mathrm{P}_{+} \end{aligned}$	
LM2574HVM-15/NOPB	ACTIVE	SOIC	NPA	14	50	Green (RoHS \& no Sb/Br)	CU SN	Level-3-260C-168 HR	-40 to 125	$\begin{aligned} & \text { LM2574HVM } \\ & -15 \mathrm{P}^{2} \\ & \hline \end{aligned}$	Samples
LM2574HVM-3.3/NOPB	ACTIVE	SOIC	NPA	14	50	Green (RoHS \& no Sb/Br)	CU SN	Level-3-260C-168 HR	-40 to 125	$\begin{aligned} & \text { LM2574HVM } \\ & -3.3 \text { P }_{+} \end{aligned}$	Samples
LM2574HVM-5.0	NRND	SOIC	NPA	14	50	TBD	Call TI	Call TI	-40 to 125	$\begin{aligned} & \text { LM2574HVM } \\ & -5.0 \mathrm{P}_{+} \\ & \hline \end{aligned}$	
LM2574HVM-5.0/NOPB	ACTIVE	SOIC	NPA	14	50	Green (RoHS \& no Sb/Br)	CU SN	Level-3-260C-168 HR	-40 to 125	$\begin{aligned} & \text { LM2574HVM } \\ & -5.0 \mathrm{P}_{+} \\ & \hline \end{aligned}$	Samples
LM2574HVM-ADJ	NRND	SOIC	NPA	14	50	TBD	Call TI	Call TI	-40 to 125	$\begin{aligned} & \text { LM2574HVM } \\ & \text {-ADJ P+ } \end{aligned}$	
LM2574HVM-ADJ/NOPB	ACTIVE	SOIC	NPA	14	50	Green (RoHS \& no Sb/Br)	CU SN	Level-3-260C-168 HR	-40 to 125	$\begin{aligned} & \text { LM2574HVM } \\ & \text {-ADJ P+ } \\ & \hline \end{aligned}$	Samples
LM2574HVMX-12/NOPB	ACTIVE	SOIC	NPA	14	1000	Green (RoHS \& no Sb/Br)	CU SN	Level-3-260C-168 HR	-40 to 125	$\begin{aligned} & \text { LM2574HVM } \\ & -12 \mathrm{P}_{+} \end{aligned}$	Samples
LM2574HVMX-15/NOPB	ACTIVE	SOIC	NPA	14	1000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU SN	Level-3-260C-168 HR	-40 to 125	$\begin{aligned} & \text { LM2574HVM } \\ & -15 \mathrm{P}_{+} \end{aligned}$	Samples
LM2574HVMX-3.3/NOPB	ACTIVE	SOIC	NPA	14	1000	Green (RoHS \& no Sb/Br)	CU SN	Level-4-260C-72 HR	-40 to 125	$\begin{aligned} & \text { LM2574HVM } \\ & -3.3 \mathrm{P}_{+} \\ & \hline \end{aligned}$	Samples
LM2574HVMX-5.0	NRND	SOIC	NPA	14	1000	TBD	Call TI	Call TI	-40 to 125	$\begin{aligned} & \text { LM2574HVM } \\ & -5.0 \mathrm{P}_{+} \end{aligned}$	
LM2574HVMX-5.0/NOPB	ACTIVE	SOIC	NPA	14	1000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU SN	Level-3-260C-168 HR	-40 to 125	$\begin{aligned} & \text { LM2574HVM } \\ & -5.0 \mathrm{P}+ \end{aligned}$	Samples
LM2574HVMX-ADJ/NOPB	ACTIVE	SOIC	NPA	14	1000	Green (RoHS \& no Sb/Br)	CU SN	Level-3-260C-168 HR	-40 to 125	$\begin{aligned} & \text { LM2574HVM } \\ & \text {-ADJ P+ } \end{aligned}$	Samples
LM2574HVN-12	LIFEBUY	PDIP	P	8	40	TBD	Call TI	Call TI	-40 to 125	$\begin{aligned} & \text { LM2574HVN } \\ & -12 \mathrm{P}_{+} \\ & \hline \end{aligned}$	
LM2574HVN-12/NOPB	ACTIVE	PDIP	P	8	40	Green (RoHS \& no Sb/Br)	CU SN	Level-1-NA-UNLIM	-40 to 125	$\begin{aligned} & \text { LM2574HVN } \\ & -12 \mathrm{P}_{+} \end{aligned}$	Samples

PACKAGE OPTION ADDENDUM

13-Sep-2014

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
LM2574HVN-15/NOPB	ACTIVE	PDIP	P	8	40	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU SN	Level-1-NA-UNLIM	-40 to 125	$\begin{aligned} & \text { LM2574HVN } \\ & -15 \mathrm{P}_{+} \end{aligned}$	Samples
LM2574HVN-5.0	LIFEBUY	PDIP	P	8	40	TBD	Call TI	Call TI	-40 to 125	$\begin{aligned} & \text { LM2574HVN } \\ & -5.0 \mathrm{P}_{+} \end{aligned}$	
LM2574HVN-5.0/NOPB	ACTIVE	PDIP	P	8	40	Green (RoHS \& no Sb/Br)	CU SN	Level-1-NA-UNLIM	-40 to 125	$\begin{aligned} & \text { LM2574HVN } \\ & -5.0 \text { P+ } \end{aligned}$	Samples
LM2574HVN-ADJ	LIFEBUY	PDIP	P	8	40	TBD	Call TI	Call TI	-40 to 125	$\begin{aligned} & \text { LM2574HVN } \\ & \text {-ADJ P+ } \end{aligned}$	
LM2574HVN-ADJ/NOPB	ACTIVE	PDIP	P	8	40	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU SN	Level-1-NA-UNLIM	-40 to 125	$\begin{aligned} & \text { LM2574HVN } \\ & \text {-ADJ P+ } \end{aligned}$	Samples
LM2574M-12	NRND	SOIC	NPA	14	50	TBD	Call TI	Call TI	-40 to 125	$\begin{aligned} & \text { LM2574M } \\ & -12 P_{+} \end{aligned}$	
LM2574M-12/NOPB	ACTIVE	SOIC	NPA	14	50	Green (RoHS \& no Sb/Br)	CU SN	Level-3-260C-168 HR	-40 to 125	$\begin{aligned} & \text { LM2574M } \\ & -12 \mathrm{P}_{+} \\ & \hline \end{aligned}$	Samples
LM2574M-3.3/NOPB	ACTIVE	SOIC	NPA	14	50	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU SN	Level-3-260C-168 HR	-40 to 125	$\begin{aligned} & \text { LM2574M } \\ & -3.3 \mathrm{P}+ \\ & \hline \end{aligned}$	Samples
LM2574M-5.0	NRND	SOIC	NPA	14	50	TBD	Call TI	Call TI	-40 to 125	$\begin{aligned} & \text { LM2574M } \\ & -5.0 \mathrm{P}+ \end{aligned}$	
LM2574M-5.0/NOPB	ACTIVE	SOIC	NPA	14	50	Green (RoHS \& no Sb/Br)	CU SN	Level-3-260C-168 HR	-40 to 125	$\begin{aligned} & \text { LM2574M } \\ & -5.0 \mathrm{P}_{+} \\ & \hline \end{aligned}$	Samples
LM2574M-ADJ	NRND	SOIC	NPA	14	50	TBD	Call TI	Call TI	-40 to 125	$\begin{aligned} & \text { LM2574M } \\ & \text {-ADJ P+ } \\ & \hline \end{aligned}$	
LM2574M-ADJ/NOPB	ACTIVE	SOIC	NPA	14	50	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU SN	Level-3-260C-168 HR	-40 to 125	$\begin{aligned} & \text { LM2574M } \\ & \text {-ADJ P+ } \end{aligned}$	Samples
LM2574MX-12/NOPB	ACTIVE	SOIC	NPA	14	1000	Green (RoHS \& no Sb/Br)	CU SN	Level-3-260C-168 HR	-40 to 125	$\begin{aligned} & \text { LM2574M } \\ & -12 \mathrm{P}_{+} \\ & \hline \end{aligned}$	Samples
LM2574MX-3.3/NOPB	ACTIVE	SOIC	NPA	14	1000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU SN	Level-4-260C-72 HR	-40 to 125	$\begin{aligned} & \text { LM2574M } \\ & -3.3 \mathrm{P}+ \\ & \hline \end{aligned}$	Samples
LM2574MX-5.0	NRND	SOIC	NPA	14	1000	TBD	Call TI	Call TI	-40 to 125	$\begin{aligned} & \text { LM2574M } \\ & -5.0 \mathrm{P}_{+} \\ & \hline \end{aligned}$	
LM2574MX-5.0/NOPB	ACTIVE	SOIC	NPA	14	1000	Green (RoHS \& no Sb/Br)	CU SN	Level-3-260C-168 HR	-40 to 125	$\begin{aligned} & \text { LM2574M } \\ & -5.0 \mathrm{P}+ \\ & \hline \end{aligned}$	Samples
LM2574MX-ADJ	NRND	SOIC	NPA	14	1000	TBD	Call TI	Call TI	-40 to 125	$\begin{aligned} & \text { LM2574M } \\ & \text {-ADJ P+ } \end{aligned}$	
LM2574MX-ADJ/NOPB	ACTIVE	SOIC	NPA	14	1000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU SN	Level-3-260C-168 HR	-40 to 125	$\begin{aligned} & \text { LM2574M } \\ & \text {-ADJ P+ } \end{aligned}$	Samples

INSTRUMENTS

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
LM2574N-12	LIFEBUY	PDIP	P	8	40	TBD	Call TI	Call TI	-40 to 125	$\begin{aligned} & \text { LM2574N } \\ & -12 P_{+} \end{aligned}$	
LM2574N-12/NOPB	ACTIVE	PDIP	P	8	40	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU SN	Level-1-NA-UNLIM	-40 to 125	$\begin{aligned} & \text { LM2574N } \\ & -12 P_{+} \end{aligned}$	Samples
LM2574N-3.3/NOPB	ACTIVE	PDIP	P	8	40	Green (RoHS \& no Sb/Br)	CU SN	Level-1-NA-UNLIM	-40 to 125	$\begin{aligned} & \text { LM2574N } \\ & -3.3 \mathrm{P}_{+} \\ & \hline \end{aligned}$	Samples
LM2574N-5.0	LIFEBUY	PDIP	P	8	40	TBD	Call TI	Call TI	-40 to 125	$\begin{aligned} & \text { LM2574N } \\ & -5.0 P_{+} \end{aligned}$	
LM2574N-5.0/NOPB	ACTIVE	PDIP	P	8	40	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU SN	Level-1-NA-UNLIM	-40 to 125	$\begin{aligned} & \text { LM2574N } \\ & -5.0 \mathrm{P}_{+} \end{aligned}$	Samples
LM2574N-ADJ	LIFEBUY	PDIP	P	8	40	TBD	Call TI	Call TI	-40 to 125	$\begin{aligned} & \text { LM2574N } \\ & \text {-ADJ P+ } \end{aligned}$	
LM2574N-ADJ/NOPB	ACTIVE	PDIP	P	8	40	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU SN	Level-1-NA-UNLIM	-40 to 125	$\begin{aligned} & \text { LM2574N } \\ & \text {-ADJ P+ } \end{aligned}$	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined
Pb-Free (RoHS): Tl's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, Tl Pb -Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb -Free (RoHS compatible) as defined above.
Green (RoHS \& no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annul basis.

TAPE AND REEL INFORMATION

TAPE DIMENSIONS

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

$\left.$| Device | Package
 Type | Package
 Drawing | Pins | SPQ
 LM2574HVMX-12/NOPB | SOIC | NPA | 14 | Reel
 Diameter
 $(\mathbf{m m})$ | Reel
 Width
 ($\mathbf{(m m})$ | A0
 $(\mathbf{m m})$ | B0
 $(\mathbf{m m})$ | K0
 $(\mathbf{m m})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LM2574HVMX-15/NOPB | SOIC | NPA | 14 | 1000 | 330.0 | 16.4 | 10.9 | 9.5 | 3.2 | 12.0 | 16.0 | Q1 |
| LM2574HVMX-3.3/NOPB | SOIC | NPA | 14 | 1000 | 330.0 | 16.4 | 10.9 | 9.5 | 3.2 | 12.0 | 16.0 | Q1 |
| $(\mathbf{m m})$ | | | | | | | | | | | | | | Pin1 |
| :---: |
| Quadrant | \right\rvert\,

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM2574HVMX-12/NOPB	SOIC	NPA	14	1000	367.0	367.0	38.0
LM2574HVMX-15/NOPB	SOIC	NPA	14	1000	367.0	367.0	38.0
LM2574HVMX-3.3/NOPB	SOIC	NPA	14	1000	367.0	367.0	38.0
LM2574HVMX-5.0	SOIC	NPA	14	1000	367.0	367.0	38.0
LM2574HVMX-5.0/NOPB	SOIC	NPA	14	1000	367.0	367.0	38.0
LM2574HVMX-ADJ/NOPB	SOIC	NPA	14	1000	367.0	367.0	38.0
LM2574MX-12/NOPB	SOIC	NPA	14	1000	367.0	367.0	38.0
LM2574MX-3.3/NOPB	SOIC	NPA	14	1000	367.0	367.0	38.0
LM2574MX-5.0	SOIC	NPA	14	1000	367.0	367.0	38.0
LM2574MX-5.0/NOPB	SOIC	NPA	14	1000	367.0	367.0	38.0
LM2574MX-ADJ	SOIC	NPA	14	1000	367.0	367.0	38.0
LM2574MX-ADJ/NOPB	SOIC	NPA	14	1000	367.0	367.0	38.0

$P(R-P D I P-T 8)$
PLASTIC DUAL-IN-LINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001 variation BA.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in Tl's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.
TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.
Resale of Tl components or services with statements different from or beyond the parameters stated by Tl for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, Tl's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	$\underline{\text { microcontroller.ti.com }}$	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessco		

[^0]: Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

