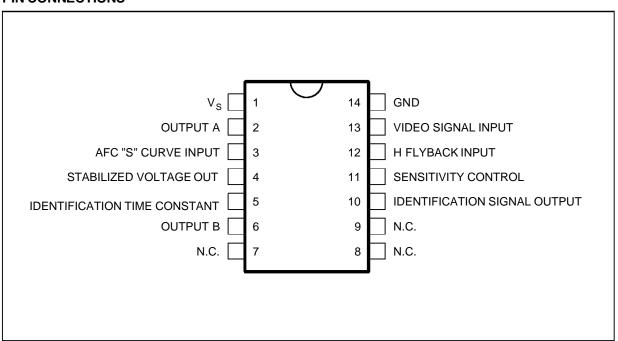




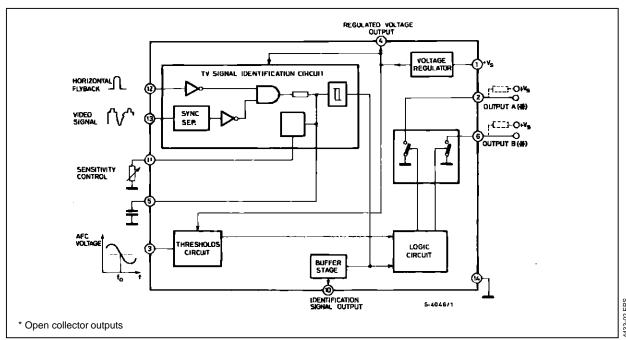

# TV SIGNAL IDENTIFICATION CIRCUIT AND AFC INTERFACE

- IDENTIFICATION OF TRUE TV STATIONS ONLY
- LOW IMPEDANCE OUTPUT OF THE IDENTI-FICATION SIGNAL
- DIGITAL CONTROL SIGNAL FOR AUTOMAT-IC SEARCH AND AFC OPERATION
- THERMAL COMPENSATION OF THE VOLT-AGE REGULATOR




## **DESCRIPTION**

The TDA4433 is a monolithic integrated circuit in a 14 lead dual-in-line plastic package. It integrates the following functions:


- TV signal identificator - Sync. separator - Threshold detector - Digital Interface - Voltage regulator.

## **PIN CONNECTIONS**



December 1992 1/5

## **BLOCK DIAGRAM**



## **ABSOLUTE MAXIMUM RATINGS**

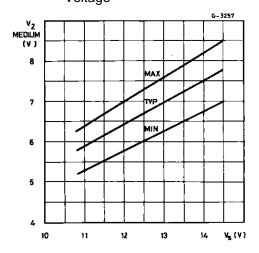
| Symbol                            | Parameter                                           | Value              | Unit |  |
|-----------------------------------|-----------------------------------------------------|--------------------|------|--|
| Vs                                | Supply Voltage (pin 1)                              | 16                 | V    |  |
| V <sub>3</sub>                    | Voltage at Pin 3                                    | 16                 | V    |  |
| V <sub>13</sub>                   | Voltage at Pin 13                                   | -5, +6             | V    |  |
| l <sub>6</sub> ; l <sub>2</sub>   | Pin 6 and Pin 2 Current                             | 1                  | mA   |  |
| I <sub>10</sub>                   | Pin 10 Current                                      | 2                  | mA   |  |
| I <sub>11</sub>                   | Pin 11 Current                                      | 2                  | mA   |  |
| I <sub>12</sub>                   | Pin 12 Current                                      | ± 2                | mA   |  |
| P <sub>tot</sub>                  | Total Power Dissipation at T <sub>amb</sub> ≤ 70 °C | 800                | mW   |  |
| T <sub>stg</sub> , T <sub>j</sub> | Storage and Junction Temperature                    | - 40, <b>+</b> 150 | °C   |  |

## **THERMAL DATA**

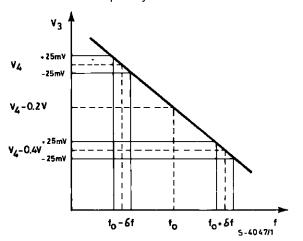
| Symbol                | Symbol Parameter                         |     | Unit |
|-----------------------|------------------------------------------|-----|------|
| R <sub>th j-amb</sub> | Thermal Resistance Junction-ambient Max. | 100 | °C/W |

## **ELECTRICAL CHARACTERISTICS**

(refer to the test circuit;  $V_S = 12 \text{ V}$ ,  $T_{amb} = 25 ^{\circ}\text{C}$ , unless otherwise specified)

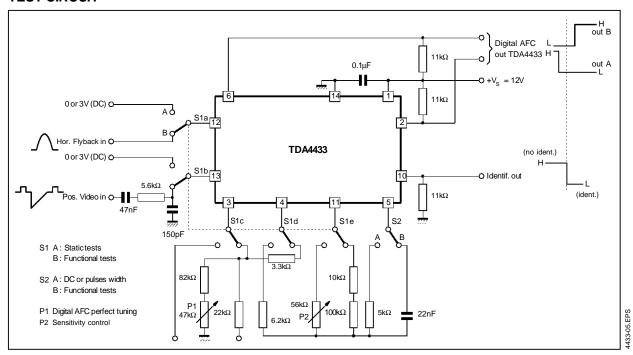

| Symbol         | Parameter                    | Test Conditions                         | Min.                 | Тур. | Max. | Unit |     |
|----------------|------------------------------|-----------------------------------------|----------------------|------|------|------|-----|
| Vs             | Supply Voltage Range (pin 1) |                                         | 10.8                 |      | 14.5 | V    | ]   |
| Is             | Supply Current (pin 1)       | V <sub>s</sub> = 14.5 V                 |                      |      | 30   | mA   |     |
| V <sub>2</sub> | Output Voltage               | $f_{tuning} < fo I_2 = 1 mA$            | $V_s - 0.5$          |      |      | V    |     |
|                |                              | $f_{tuning} = f_0$                      |                      |      | 0.8  | V    |     |
|                |                              | $f_{tuning} > f_{o}$                    |                      |      | 0.8  | V    |     |
| V <sub>6</sub> | Output Voltage               | $f_{tuning} < f_0$ $I_6 = 1 \text{ mA}$ |                      |      | 0.8  | V    | ] ; |
|                |                              | $f_{tuning} = f_0 I_6 = 1 mA$           |                      |      | 0.8  | ٧    |     |
|                |                              | $f_{tuning} > f_{o}$                    | V <sub>s</sub> - 0.5 |      |      | V    |     |

4433-03.TBL


# **ELECTRICAL CHARACTERISTICS** (continued)

| Symbol                          | Parameter                                                         | Test Conditions                           | Min.                 | Тур.                 | Max.                 | Unit  |
|---------------------------------|-------------------------------------------------------------------|-------------------------------------------|----------------------|----------------------|----------------------|-------|
| V <sub>3</sub>                  | Input Voltage Range                                               |                                           | 4                    |                      | 8                    | V     |
| V <sub>3U</sub>                 | Upper Threshold Voltage                                           | See Figure 2                              | V <sub>4</sub> – 25  | V <sub>4</sub>       | V <sub>4</sub> + 25  | mV    |
| V <sub>3L</sub>                 | Lower Threshold Voltage                                           | See Figure 2                              | V <sub>4</sub> – 425 | V <sub>4</sub> - 400 | V <sub>4</sub> – 375 | mV    |
| R <sub>3</sub>                  | Input Resistance                                                  | $V_3 = V_4$                               | 1.4                  |                      |                      | МΩ    |
| V <sub>4</sub>                  | Regulated Voltage                                                 | I <sub>4</sub> = 1 mA                     |                      | 6.6                  |                      | V     |
| I <sub>4</sub>                  | Output Current                                                    |                                           |                      |                      | 1                    | mA    |
| R <sub>4</sub>                  | Output Differential Resistance                                    |                                           |                      | 60                   |                      | Ω     |
| $\frac{\Delta V_4}{\Delta T_S}$ | Regulated Voltage Thermal Drift                                   |                                           |                      |                      | ± 2                  | mV/°C |
| Δ1S<br>V <sub>10</sub>          | Identification Output Voltage                                     | No Identification, I <sub>10</sub> = 1 mA | V <sub>s</sub> – 1.3 |                      |                      | V     |
| - 10                            |                                                                   | Identification                            | 10 110               |                      | 20                   | mV    |
| R <sub>10</sub>                 | Output Resistance                                                 |                                           |                      | 100                  |                      | Ω     |
| V <sub>12</sub>                 | Switch off Threshold Voltage                                      |                                           |                      |                      | 1                    | V     |
| I <sub>12</sub>                 | Input Flyback Current                                             |                                           | 0.5                  |                      | 1.5                  | mA    |
| R <sub>12</sub>                 | Input Resistance                                                  | V <sub>12</sub> = 3 V                     |                      | 10                   |                      | kΩ    |
| t <sub>fly</sub>                | Flyback Pulse Duration                                            |                                           | 10                   |                      | 17                   | μsec. |
| t                               | Time Delay between Leading Edges of Flyback Pulse and Sync. Pulse |                                           | 0                    |                      | 3.5                  | μsec. |
| V <sub>13</sub>                 | Video Input Signal (peak to peak)                                 |                                           | 2.5                  |                      | 4.5                  | V     |
| V <sub>13</sub>                 | Sync. Pulse Amplitude<br>(above black level)                      |                                           | 0.52                 |                      |                      | V     |
| R <sub>13</sub>                 | Input Resistance                                                  |                                           |                      |                      | 1.5                  | kΩ    |

Figure 1 : Medium Output Voltage vs. Supply Voltage




**Figure 2 :** Digital AFC Threshold Voltage vs. Frequency



| Input Voltage (V <sub>3</sub> )         | Output Voltage (V <sub>2</sub> ) | Output Voltage (V <sub>6</sub> ) |
|-----------------------------------------|----------------------------------|----------------------------------|
| V <sub>3</sub> > V <sub>4</sub>         | High level                       | Low Level                        |
| $V_4 - 0.4 \ V < V_3 < V_4$             | Low Level                        | Low Level                        |
| V <sub>2</sub> < V <sub>4</sub> - 0.4 V | Low Level                        | High Level                       |

#### **TEST CIRCUIT**



#### APPLICATION INFORMATION

(refer to the block diagram)

## TV Signal Identification Circuit

The circuit recognizes only TV signals by checking logically during one line the coincidence between the horizontal flyback pulse and the pulse detected by a sync. separator.

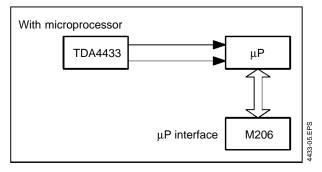
The signal identification is carried out by charging the capacitor connected to pin 5; when the capacitor voltage overcomes a fixed threshold voltage, a Schmitt trigger switches and enables the AFC control. If a TV signal is recognized, the capacitor is slightly charged every line and its voltage reaches the threshold after a number of line which is defined by the value of the capacitor itself. The sensitivity of the identification circuit, hence the number of lines required to charge the capacitor, can be adjusted by means of the resistor connected between pin 11 and ground.

When the identification has been made, a signal (level L) is available at pin 10.

### **Threshold Circuit**

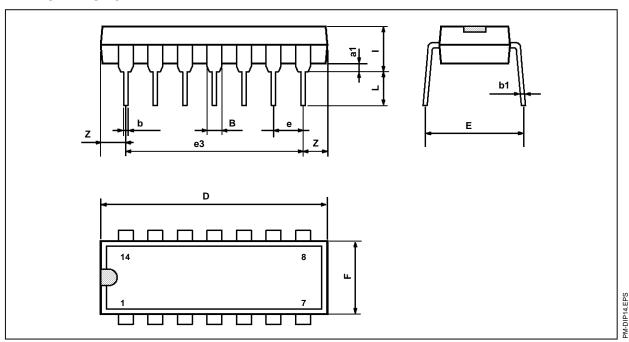
The circuit detects 3 ranges of AFC voltage and in combination with the TV signal identification circuit drives the electronic switches.

With a correct TV signal, the output levels corresponding to the 3 ranges are:


|                  | (V <sub>2</sub> ) | (V <sub>6</sub> ) |
|------------------|-------------------|-------------------|
| $f_o - \delta f$ | High Level        | Low Level         |
| fo               | Low Level         | Low Level         |
| $f_o + \delta f$ | Low Level         | High Level        |

The TDA4433 has two separate outputs which can have only two states, high (H) or low (L). The outputs at pin 2 and at pin 6 remain at a low level with no video signal input or with a video signal not identified as a true TV signal. Both pin 2 and pin 6 are open collector outputs and must be pulled-up to the positive supply voltage by external resistors.

#### **Voltage Regulator**


The circuit can deliver 1 mA and it can be used as D/A converter reference to supply fine tuning voltage.

### **EPM SYSTEM CONFIGURATIONS**



#### PACKAGE MECHANICAL DATA

14 PINS - PLASTIC DIP



| Dimensions | Millimeters |       | Inches |       |       |       |
|------------|-------------|-------|--------|-------|-------|-------|
|            | Min.        | Тур.  | Max.   | Min.  | Тур.  | Max.  |
| a1         | 0.51        |       |        | 0.020 |       |       |
| В          | 1.39        |       | 1.65   | 0.055 |       | 0.065 |
| b          |             | 0.5   |        |       | 0.020 |       |
| b1         |             | 0.25  |        |       | 0.010 |       |
| D          |             |       | 20     |       |       | 0.787 |
| E          |             | 8.5   |        |       | 0.335 |       |
| е          |             | 2.54  |        |       | 0.100 |       |
| e3         |             | 15.24 |        |       | 0.600 |       |
| F          |             |       | 7.1    |       |       | 0.280 |
| i          |             |       | 5.1    |       |       | 0.201 |
| L          |             | 3.3   |        |       | 0.130 |       |
| Z          | 1.27        |       | 2.54   | 0.050 |       | 0.100 |

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No licence is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

#### © 1994 SGS-THOMSON Microelectronics - All Rights Reserved

Purchase of  $I^2C$  Components of SGS-THOMSON Microelectronics, conveys a license under the Philips  $I^2C$  Patent. Rights to use these components in a  $I^2C$  system, is granted provided that the system conforms to the  $I^2C$  Standard Specifications as defined by Philips.

### SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.